
Aalto University
School of Science
Degree Programme of Computer Science and Engineering

Teemu Sirkiä

Recognizing Programming Misconceptions

An analysis of the data collected from the UUhistle
program simulation tool

Master’s Thesis
Espoo, May 21, 2012

Supervisor: Professor Lauri Malmi
Instructor: Lic.sc. (Tech) Juha Sorva

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Teemu Sirkiä
Title:
Recognizing Programming Misconceptions – An analysis of the data collected from
the UUhistle program simulation tool
Date: May 21, 2012 Pages: vi + 76
Professorship: Software Technology Code: T-106
Supervisor: Professor Lauri Malmi
Instructor: Lic.sc. (Tech) Juha Sorva
Learning to program has many challenges. If a student encounters problems of un-
derstanding how the programming language works or how a program is executed, it
might be hard to fix these misconceptions later. These misconceptions may also make
it hard to learn more complicated concepts if the student does not understand the basics
correctly.

In program simulation exercises a student takes on the role of the computer as executor
of a program using a graphical user interface. In these exercises, students should be
able to understand the execution model to simulate the execution correctly and there-
fore simulation mistakes are interesting because they can reveal what kind of miscon-
ceptions students may have.

The main research question of this master’s thesis is to analyze log files collected by
UUhistle program simulation tool used in the basic programming course and try to
find out what the most common simulation errors the students have made are and try
to figure out the causes of the errors. Is the error a simple mistake, is it caused by the
user interface, is the error related to the simulation exercises or can we find a similar
programming misconception in the literature?

We selected common 26 errors which were likely caused by something else than a
simple mistake. The errors are related to the basics of the execution, conditions, loops,
functions and object-oriented programming. Many of these errors are similar to those
misconceptions reported in the literature earlier. Therefore we can make an assumption
that visual program simulation makes it possible to recognize possible misconceptions
and be used to fix the misconceptions by giving feedback to students.

We also present a few ideas how to improve UUhistle based on the results we got.
Some of the errors are clearly related to the user interface and by making some changes
to the interface we can reduce the number of the errors caused by the tool itself. We
also noticed that the students did not read much the feedback UUhistle gave to them
and we should also improve the way UUhistle shows the feedback.
Keywords: computing education, introductory programming, programming

misconceptions, UUhistle, visual program simulation, VPS
Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Teemu Sirkiä
Työn nimi:
Ohjelmoinnin virhekäsitysten tunnistaminen – Vislaamo-simulointityökalusta kerätyn
tietoaineiston analysointi
Päiväys: 21. toukokuuta 2012 Sivumäärä: vi + 76
Professuuri: Ohjelmistotekniikka Koodi: T-106
Valvoja: Professori Lauri Malmi
Ohjaaja: TkL Juha Sorva
Ohjelmoinnin opiskeluun liittyy monia haasteita. Mikäli opiskelijalle syntyy heti alus-
sa virheellisiä käsityksiä ohjelmointikielestä tai ohjelman ajonaikaisesta toiminnas-
ta, näiden virheiden korjaaminen myöhemmin voi olla haastavaa, ja ne hankaloittavat
myöhempien asioiden oppimista.

Visuaalisissa ohjelmasimulaatiotehtävissä opiskelija ottaa tietokoneen roolin ja suo-
rittaa hänelle annettua ohjelmaa graafisessa käyttöliittymässä simuloiden suorituk-
seen liittyviä vaiheita. Koska opiskelijan täytyy itse simuloida ohjelman suoritusta,
tämänkaltaiset tehtävät voivat paljastaa, millaisia virhekäsityksiä opiskelijoilla on.

Työn päätavoitteena on tutkia ohjelmoinnin peruskurssilla käytetyn Vislaamo-
ohjelmasimulaatiotyökalun keräämistä lokitiedoista, minkälaisia yleisiä virheitä opis-
kelijat ovat simulaatiotehtävissä tehneet ja pyrkiä päättelemään, mistä virhe on voinut
aiheutua. Onko virhe puhdas vahinko, onko Vislaamon käyttöliittymä voinut vaikuttaa
sen syntymiseen, johtuuko virhe simulaatiotehtävien luonteesta vai voisiko virheeseen
liittyä jokin kirjallisuudessa tunnettu ohjelmoinnin virhekäsitys?

Kerätyistä lokitiedoista valittiin 26 yleistä virhettä, joiden taustalla vaikutti olevan jota-
kin muuta kuin vahingossa tehty virheellinen askel. Virheet liittyvät ohjelman suorituk-
sen perusteisiin, ehtolauseisiin, silmukoihin, funktioihin ja olio-ohjelmointiin. Näistä
virheistä moni on hyvin samankaltainen kuin aiemmin kirjallisuudessa esitetyt vir-
hekäsitykset, mikä tukee olettamusta, että ohjelmasimulaation avulla on mahdollista
havaita mahdollisia virhekäsityksiä ja yrittää korjata niitä antamalla mahdollisimman
hyvää ja täsmällistä palautetta opiskelijalle.

Työssä esitellään myös muutamia ideoita, joiden avulla Vislaamo-työkalua voidaan
kehittää nykyistä paremmaksi tässä työssä tehtyjen havaintojen perusteella. Muutama
virheistä johtuu selkeimmin käyttöliittymästä, jota kehittämällä näiden virheiden osuus
saadaan todennäköisesti pienemmäksi. Toisaalta havaittiin, että opiskelijat lukevat hy-
vin vähän työkalun antamaa palautetta, joten sen tuomista paremmin esiin täytyy myös
kehittää.
Asiasanat: tietotekniikan opetus, ohjelmoinnin alkeet, ohjelmoinnin vir-

hekäsitykset, Vislaamo, ohjelmasimulaatio, VPS
Kieli: englanti

iii

Preface

My work with the UUhistle project started quite exactly three years ago. I saw a
work announcement where Juha Sorva was searching for a person to implement
a prototype of a new program simulation tool based on Juha’s idea. I went to the
interview and meanwhile I was driving back home Juha had sent me an email that
I will get the job.

At that time, I did not know exactly what I was going to implement and what we
were going to achieve but I had promised to do my best. Together with Juha we
brainstormed ideas, tried out many different things and gradually UUhistle started
to become a simulation tool that could really work.

The work has been challenging but I have enjoyed the coding and working with
Juha. It has also been a privilege to work with LeTech group and see the tool
being used in the basic programming courses here in Aalto University.

The process to write this master’s thesis began in the fall 2011. I want to thank
both my supervisor professor Lauri Malmi and instructor Lic.Sc Juha Sorva for
their invaluable guidance and feedback throughout the writing process.

I am grateful to my parents and grandparents who have always supported me with
my studies.

I want also to thank my work colleagues Teemu Koskinen and Petri Ihantola sit-
ting in the same room with me and helping me with the questions I have had. And
of course, I want to thank all the students who have used UUhistle. Without you
it would have been impossible to write this thesis.

Espoo, May 21, 2012

Teemu Sirkiä

iv

Contents

1 Introduction 1
1.1 Difficulties in programming . 1
1.2 Program visualization and simulation 1
1.3 Structure of this thesis . 2

2 Programming misconceptions 3
2.1 Background . 3
2.2 Types of the misconceptions . 4
2.3 Sources of the misconceptions 5
2.4 Preventing and correcting misconceptions 6

3 The UUhistle program simulation tool 7
3.1 General overview . 7
3.2 User interface . 8

3.2.1 Original user interface 8
3.2.2 Improved user interface 10

3.3 UUhistle exercises . 11
3.4 Related systems . 13

3.4.1 ViLLE: Clouds and boxes 13
3.4.2 Online Tutoring System 14
3.4.3 The tool by Donmez and Inceoglu 15
3.4.4 Other systems . 16

3.5 UUhistle compared with the other systems 17

4 Objectives 19
4.1 Common errors . 19
4.2 Reasons for errors . 20
4.3 Creating better VPS exercises . 20

5 Data analysis 21

v

5.1 General description of the collected data 21
5.2 The log files . 21
5.3 The analysis . 23
5.4 Challenges with the analysis . 24

6 Results 26
6.1 Background for the data . 26
6.2 Common errors . 27

6.2.1 Basics . 29
6.2.2 Branches and loops . 34
6.2.3 Functions . 36
6.2.4 Object-oriented programming 41

6.3 Explanation texts as a part of the exercises 45

7 Discussion 48
7.1 Reasons for the errors . 48

7.1.1 Errors caused by the user interface 48
7.1.2 Errors related to previously reported misconceptions . . . 50

7.2 Exercise solving strategies . 56
7.3 Trustworthiness of the results . 57

8 Conclusion 58

Bibliography 59

A Students and their backgrounds 64

B The number of the analyzed log files 65

C UUhistle exercises 66

vi

Chapter 1

Introduction

Learning a new thing is always a long process before mastering the topic well.
Making errors is a part of the process and we use to learn from our mistakes. But
if you are learning on your own or you do not get enough guidance, how do you
know that you might have understood something incorrectly?

1.1 Difficulties in programming

Learning programming is no exception. To become a good programmer, it re-
quires a lot of learning, understanding and especially coding. The problem is that
if you don’t understand some basic concepts correctly, it might be very hard or
impossible to continue to learn because the computer won’t behave at all like you
have thought. At this point, how to continue the studies if the behavior seems to
be totally unexpected? That is why it is important to recognize different miscon-
ceptions as early as possible and try to fix them.

Usually most of the misconceptions are related to things that happen during the
execution and there is no clear way to see what is going on under the hood. A
novice programmer may know something about variables or the concept of param-
eter passing but how to learn these things correctly if you can not see them?

1.2 Program visualization and simulation

Program visualization tries to help in understanding the concepts and the different
phases in the program execution by showing them visually. This kind of visu-

1

CHAPTER 1. INTRODUCTION 2

alization has been used when teaching algorithms and it seems to be an efficient
way to improve the understanding and learn better.

Although program visualization is a good way to make abstract things visible, the
problem is that only by looking at an animation, you may not notice that animation
proceeds differently than you originally thought.

Visual program simulation is a concept that is a form of program visualization
which encourages students to think and be active instead of sitting passively in
front of the screen and watching an animation. Sorva gives the following defini-
tion: ”In visual program simulation, a learner takes on the role of the computer as
executor of a program” [29]

When novice programmers are doing VPS exercises, they have to really think how
the execution proceeds and what the next step is because they have to simulate it
by themselves. Active thinking means that you have to understand what you are
doing and why. If your idea is wrong, you will see that the idea is not going to
work and you have to think what is wrong with that.

VPS tools can detect possible misconceptions automatically by some predefined
rules and give immediate feedback to students. These tools also make it possi-
ble to log the simulation steps and collect the data making the logs to a great
source to find common mistakes and other interesting data about how the tools are
used. The main focus of this thesis is to analyze the logs collected with one VPS
tool, UUhistle, and see what kind of information can be extracted from the log
files.

1.3 Structure of this thesis

The thesis discusses first in the second chapter programming misconceptions in
general based on the literature. Then in the third chapter UUhistle program simu-
lation system is presented to understand better the collected data. UUhistle is also
compared with a few similar existing systems. After that the objectives of this
thesis are discussed in the fourth chapter in more detail. The fifth chapter is about
the collected data and how it is analyzed. The results are presented in the sixth
chapter. In the seventh chapter, we discuss the errors we found and how those
errors are related to the misconceptions reported in the literature. We also discuss
how to improve the learning experience based on the results we have. In the last
chapter, we make a conclusion and a short summary of the results.

Chapter 2

Programming misconceptions

In this chapter we discuss the programming misconceptions in general: what kind
of misconceptions exist, where do they come from and how to avoid them. This
chapter mainly focuses on the literature of this topic.

2.1 Background

A misconception means that you believe you know how something works but in
reality the model is wrong. The less you know about the topic, the more severe
the misconception can be. If the subject is somehow familiar, it may be that
only the irrelevant details are not correct, but when you do not have any previous
knowledge or just a little, your way of thinking and understanding the concept can
be totally incorrect.

Programming misconceptions are mostly related to the knowledge how the pro-
gram code is executed and how the different concepts, for example, variables,
control structures and objects are linked to the execution model.

Programming misconceptions have been researched since the 1970s but the most
active era was in the 1980s. At that time the psychological background of pro-
gramming and the understanding of procedural programs written in BASIC and
Pascal, for example, were under active research. The research gained more mo-
mentum again in the late 1990s and at the beginning of the 2000s when object-
oriented programming started to become popular and many basic programming
courses switched to object-oriented programming languages such as Java and
C++.

3

CHAPTER 2. PROGRAMMING MISCONCEPTIONS 4

2.2 Types of the misconceptions

Novice programmers may have many misconceptions related to many different
topics. The list of the reported misconceptions is long and in this thesis it is not
possible to cover them all. However, in this section we give a brief overview of the
main categories and what kind of misconceptions exist in those categories.

One of the main issues is to understand the program execution. The code lines are
executed sequentially and the behavior of the program depends on the executed
lines, not the upcoming ones. Pea [19] states that some students believe that all
the lines in the program are alive at once. Pea also constructed the term superbug
which means computers have some kind of intelligent powers to know what will
happen in the lines that are not currently executed.

Du Boulay [4] discovered that many students have problems with variables and
assignments. Students do not understand that variables can hold only one value
at a time and it is important to write assignment statements in the right order.
Du Boulay also noticed that some students believe that after assigning a variable
to another, the variables are somehow linked together which means changing the
value of one variable would also change the value of the second variable.

One type of the misconceptions is related to the program flow. Du Boulay made
similar observations as Pea that novice programmers can not always understand
that the next instruction is always executed if the program does not instruct oth-
erwise. Do Boulay states that some novices believe instructions are saved to a
buffer and then executed all at once when the program ends. Loops may also
cause problems because some students may believe that the condition of while
loop is constantly checked. The variable of for loop is also updated behind the
scenes which can make it hard to understand. Conditionals were also problem-
atic for students analyzing BASIC code in the research of Bayman and Mayer
[1]. The students did not understand how IF statements control the program flow
especially when GOTO instructions were used together with IF statements.

Functions and function calls have difficult concepts to understand. Parameter
passing, meaning of the return value and variable scope require a lot of think-
ing. Misconceptions related especially to parameter passing have been researched
by Madison and Gifford [14] and Fleury [5]. It is hard to understand what it means
when a parameter is passed to a function. Parameters are fetched from the caller’s
scope and the value is passed to callee’s scope. In this process the same value gets
a different name and the callee can not access the caller’s variables. Pascal lan-
guage was used in previous articles and Pascal, as well as many other languages,
can also handle parameters as references which is far more confusing.

CHAPTER 2. PROGRAMMING MISCONCEPTIONS 5

Object-oriented programming can be seen as an extension to procedural program-
ming. Therefore it suffers from the same misconceptions as the procedural pro-
grams but the object-oriented concepts bring a completely new set of misconcep-
tions. Classes, objects, methods and references are important to understand but if
the object-oriented world is not clear, it might be impossible to construct a clear
vision how object-oriented programming works and how to use it efficiently. Hol-
land et al. [8] lists a few problems: objects are just wrappers for variables or
simple records, methods are mainly assignments and it is difficult to make dif-
ference between classes and objects. Sanders and Thomas [24] point out similar
results. They also discuss linking and interaction problems and problems with
understanding inheritance.

2.3 Sources of the misconceptions

All novice programmers have their own misconceptions and the sources of the
specific misconceptions vary but in the literature there are many suggested ways
how misconceptions arise.

The syntax of the programming language might be thought to be a clear source.
If the syntax is difficult to understand, it may lead to a situation where it is hard
to understand how the code is executed. However, this claim may not hold. Sheil
[25] has already in 1981 concluded that the notation is not a major factor in the
difficulty of programming. Spohrer and Soloway [32] and Kaczmarczyk et al.
[10] got similar results in their research.

If the programming language is not the problem, what could be? Du Boulay
[4] suggests that the analogy with English can be a problem. The keywords and
commands in the programming language are chosen to be similar to the spoken
language although the semantics can be totally different. For example, in the
spoken language it is clear that whilemeans something is being done until some-
thing happens and when it happens the execution will be stopped at once. How-
ever, in the programming languages this does not hold. The condition is checked
only when one iteration is done and the next iteration is about to begin. If a
novice programmer does not know this beforehand, the misconception can arise
and stay until it is somehow proven to the student that the loop does not work in
that way.

Natural language is also a problem according to research made by Bonar and
Soloway [2]. They have stated that the preprogramming knowledge is a major
source of bugs. This means that the similar structures in natural and programming

CHAPTER 2. PROGRAMMING MISCONCEPTIONS 6

language cause difficulties because the structures do not work in the same way as
the novice programmer may expect. Bonar and Soloway also bring the concept
of fragments in the programming knowledge. If a novice does not have enough
knowledge to create the program he is working with, the novice will fill the gap
with a guess which is likely to be incorrect.

Fleury [6] researched programming in Java and noticed that the students create
their own rules based on the current knowledge and they combine it with new
experiences. The students told the programs they have seen are the most important
source of their knowledge. Lectures were a close second and textual materials a
distant third. Fleury cites that because students construct their own meanings, it
is not surprising that students will not create a complete model although complete
and accurate information is given to them.

2.4 Preventing and correcting misconceptions

A key issue is to get a student to realize that the concept he has built is somehow
wrong. The best way to do this is to show a concrete model which breaks the
mental model of the student. Mayer [15] has discovered that a concrete model can
have a strong effect on the use of new technical information. Mayer also suggests
that students should be able to explain the statements in the program code. This
helps students to use the previous knowledge and use that to comprehend the new
material.

As Fleury [6] discovered, the given program examples are important because
novice programmers get their knowledge from them. Therefore it is important
to select examples so that they break the usual misconceptions. Holland et al.
[8] have listed a number of misconceptions related to object-oriented program-
ming and what kind of examples should be used to avoid those misconceptions.
Sanders and Thomas [24] have created a similar checklist what kind of pieces
should be found in the code and what kind of understanding that piece represents.
For example, if return values and references are used, this indicates the under-
standing of linking and message passing. They have also constructed a checklist
which helps to notice if a student may have a misconception. For example, if
a class contains only getters and setters, the student may think objects are just
simple data records.

Chapter 3

The UUhistle program simulation tool

In this chapter we present UUhistle program simulation tool. The chapter covers
aspects like how the tool is used in general and what kind of exercises it supports.
The purpose is not to give a complete view of the features but enough background
that is needed to understand the chapters related to the data analysis and the re-
sults. This chapter also contains a brief review of the other similar tools.

3.1 General overview

UUhistle (pronounced as whistle and Vislaamo in Finnish) is a program visual-
ization and also a program simulation tool [29], [33]. UUhistle is based on the
original idea of Juha Sorva and the tool is being developed since May 2009. The
author of this thesis is responsible for the coding of the tool.

UUhistle is designed to be used in introductory programming courses where Python
language is used. It provides an easy way to create program examples and show
the execution as step-by-step animations. In addition to that, UUhistle also fea-
tures a new form of exercises: visual program simulation exercises where a student
takes the role of the computer and simulates the execution by dragging, dropping
and clicking the elements with the mouse manually.

UUhistle has been used in Aalto University in CS1 and Data Algorithms and
Structures courses since spring 2010. Currently over 2500 students have used
the tool. UUhistle is integrated into Goblin [7] and TRAKLA2 [12] online assess-
ment systems where the students also find the other exercises that are part of the
course they are participating. UUhistle is an applet that opens a new window on

7

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 8

the top of the browser but it can also be used as a standalone application in the
lectures, for example.

3.2 User interface

The main idea of UUhistle’s user interface is to show the important parts of the
computer memory as abstract graphics in a novice friendly way. These parts in-
clude the heap, the stack and the stack frames. When using a normal debugger,
only the call stack and local variables are normally visible but they are shown
in a way that is not very easy to understand if you are not familiar with debug-
gers. UUhistle also visualizes all the steps inside a code line compared with the
debuggers which usually handle one line of code as an atomic operation.

3.2.1 Original user interface

The original user interface is shown in the Figure 3.1. It was used in the spring
2010 when the tool was used for the first time. In the picture there is a small
object-oriented program running. The executed code is on the left where the blue
arrow points at the current line, the heap is on the top showing the literals and
objects in the memory, class definitions, functions and operators are on the right
and the stack is in the middle. In the stack there are two stack frames contain-
ing their local variables and the evaluation areas which are used to evaluate the
statements.

Orange boxes are operators, purple functions or methods, green variables, lighter
blue values and darker blue boxes are classes and class instances. The dark orange
box in the bottom frame indicates a method call which is currently active in the
frame above.

Students can control the animation with the control buttons located on the left
below the code area. When a student is doing a program visualization exercise by
watching the animation, it is possible to move backward and forward during the
animation and see some interesting steps again if needed. Also when a student is
doing a program simulation exercise and makes a mistake, after the error dialog
the student can undo the previous step or steps and think what went wrong and
how the simulation should proceed.

The status bar in the bottom shows after each animation step what has just hap-
pened and how to continue. In the simulation mode UUhistle just asks the user to
do the next step.

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 9

Fi
gu

re
3.

1:
T

he
or

ig
in

al
U

U
hi

st
le

us
er

in
te

rf
ac

e.
U

U
hi

st
le

is
us

ed
in

th
e

pr
og

ra
m

vi
su

al
iz

at
io

n
m

od
e.

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 10

Figure 3.2: The improved UUhistle user interface. The new status area is
on the left below the code area. UUhistle is used in the visual program
simulation mode in this picture.

3.2.2 Improved user interface

The problem with the original user interface was mainly the status line. It showed
important information but the place and the format was not perfect. Therefore
in the next version a new area was added to show the current status and other
relevant information. The new area is shown in the Figure 3.2. This new version
was released after the course ended in the spring 2010.

In addition, to give a better overview what has happened and how to proceed, the
status area also gives a possibility to offer more help. After each step (made by
computer or student) UUhistle shows a link Explain the previous step and if a
student clicks the link, UUhistle shows a textual description of the previous step.
An example is shown in the Figure 3.3.

In some situations, UUhistle also shows links to help dialogs which explains how
to simulate a function call in UUhistle, for example. A more detailed description
of the user interface is in [30].

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 11

Figure 3.3: UUhistle shows an explanation of the previous step. There can
also be links to another explanations that are related to the topic.

3.3 UUhistle exercises

As already mentioned, there are two main categories of the exercises. The first
category contain traditional program visualization exercises where students only
watch the animated program execution. In this mode students are not required to
tell how the execution proceeds and the main goal is to understand the concept
being trained and see how UUhistle visualizes the steps. Teachers may add ques-
tions or pop-up dialogs to emphasize important things but these do not affect the
execution.

The second category contains visual program simulation exercises where students
have to do the steps by themselves in the same manner as the computer did in the
previous examples. The exercises are normally arranged so that there is first a pro-
gram visualization exercise and after that a similar program simulation exercise.
In program simulation exercises students are encouraged to think what happens
next in order to be able to continue with the exercise. This kind of exercises let
students think the details and simulation may also reveal misconceptions if the
execution does not proceed as the student thought.

The newer version of UUhistle also tries to recognize misconceptions by some
predefined rules. In this case it can show a dialog explaining what was wrong
with that step and why. A more detailed description of this functionality is in
[31].

The program simulation exercises are done by dragging and dropping the val-
ues. Normally in VPS exercises UUhistle controls the program flow (except in
branches where students have to select the next line manually) and students sim-

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 12

Figure 3.4: The simulation steps of the code line a = 2 * 3 + 4. The dark
orange operators mean that the student clicks the operator and after that the
expression is replaced with the result. The result is shown in the next step
which is not an actual simulation step.

ulate the other steps. It is also possible to create so called hybrid exercises where
students do some of the steps and UUhistle does the rest automatically. In this kind
of exercises it is easy to train only some particular things avoiding the exercise to
become too long and complex.

A concrete example of the simulation is presented next. The code line in this
example is a simple assignment statement: a = 2 * 3 + 4. The simulation of
this line in UUhistle used in 2010 consists of nine simulation steps. The steps are
presented visually in the Figure 3.4.

The student should evaluate the right-hand side of the assignment first. This is
done by dragging the needed values from the heap and the operators from the
operator panel so that the expression is constructed to the evaluation area as it is in
the code. However, the important part is that UUhistle requires the multiplication
is executed before dragging the addition operator, as the execution proceeds in
reality. In this way students learn in which order the more complex expressions
are evaluated after they have first understood the basic idea. After the right-hand
side is evaluated and the value 10 is in the evaluation area, the user creates the
variable inside the stack frame and moves the result from the evaluation area to
the variable.

More examples of different simulation steps are presented in Chapter 6 which
discusses the errors the students have made. More information about the tool and
also the tool can be downloaded from the web site http://uuhistle.org.

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 13

3.4 Related systems

There are many program visualization tools but only few where students can
somehow interact with or control the execution. Here is a short presentation of
some existing tools having the same kind of features as in UUhistle.

3.4.1 ViLLE: Clouds and boxes

ViLLE is originally a Java applet based language-independent program visualiza-
tion system [22]. The current version discussed here uses modern web technolo-
gies and runs in the browser without any plugins [34]. This version also features a
new kind of exercises, called Clouds and boxes, where the student must simulate
the execution of the given small programs written in Java. The user interface of
is presented in Figure 3.5. ViLLE has also other exercise types but in this section
we discuss only the Clouds and boxes exercises.

The main idea of these exercises is to see a line of code as one atomic step. For
example, an assignment such as int b = a + 2 is done by creating a new inte-
ger variable and assigning the correct value to the variable at once. There are no
intermediate steps to calculate the new value, for instance. If there is a need to
change the value assigned to a variable, the new value is just changed to the text
field presenting the current value. When on line of code is completed, the student
clicks Next Step button and the execution jumps to the next line. There are also
modes where the current line is not visible or the student must always explicitly
select the next line instead of an automatic jump.

ViLLE supports function calls (or actually static method calls in this context be-
cause the exercises are in Java) defined in the simulated code but it does not sup-
port classes. If the code line contains, for example, string manipulations with
substring method, the user needs to know what the return value of that method
located in Java’s standard library is. The method call itself is totally invisible to
the student.

There is no contextual help or immediate feedback while doing the exercise but
student gets the grade after submitting the exercise. The exercise can be submitted
at any time but after getting the grade the student can not anymore proceed the
execution without resetting the exercise and starting again from the beginning. If
the student does not get the full points, the tool will not give any feedback about
what went wrong.

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 14

Figure 3.5: A screenshot of ViLLE Clouds and boxes exercise running in-
side a browser.

3.4.2 Online Tutoring System

Online Tutoring System is a Java applet that lets students to simulate the execution
of the given code [11]. The code examples are written in Visual Basic but the tool
itself is language independent.

The tool shows the code and the student must click always the next line. If the
line contains a simple assignment, the tool asks which value will be assigned to
this variable. More complex statements are evaluated in a separate view, where
the student always clicks the next part to be evaluated and evaluates the statement
in the correct order. Two views of the tool are presented in Figure 3.6.

The exercises contain basic operators, branches, loops, type conversion functions
and some self defined functions but are no classes or object instances. Function
calls are simulated in a separated but similar view as the other code but the stack
is not visualized at all.

The tool gives immediate feedback if the step is not correct. If the student was
asked to write a result and it was incorrect, the tool asks to repeat the step and
gives the correct answer. If the student should select the part to be evaluated next
or the next line and the selection was incorrect, the tool states the choice was

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 15

Figure 3.6: Two views from Online Tutoring System [18]. On the left there
is an example program running and the student should select the next state-
ment to be evaluated. On the right there is a view how the given statement
is evaluated stepwise.

incorrect but does not reveal the correct answer. There are no explanation texts
or a possibility to undo and redo the actions. Of course there is no need to undo
because the simulation will not go further before the step is correct but if the
student would like to do some steps again to train that, the only way is to reset the
exercise and start again.

3.4.3 The tool by Donmez and Inceoglu

This unnamed tool is made with Flash and it is used to let students simulate small
C# programs [3]. It supports a small subset of the language: integers, floats,
booleans, strings, basic operators, console and type conversion functions and if
and while statements.

The features allow simple exercises covering basic arithmetics, variables, type
conversions and simple I/O. The statements are evaluated in so called active area
which is seen in Figure 3.7. The statements are evaluated stepwise and the func-
tions can be called by selecting the right function from the drop-down list. If the
result is stored to a variable, a new variable can be created to the variable area
and then assign the value to the variable by selecting the variable name from the
drop-down list.

The tool does not show the stack or support self-defined function calls. There is
an area called help topics area but the description of the tool does not discuss in
more detail about what kind of help the tool shows.

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 16

Figure 3.7: The interface of the tool made by Donmez and Inceoglu as
presented in [3]. The view consists of six areas.

3.4.4 Other systems

There are two systems that do not fall in the category of visual program simulation
but they are in other ways related to UUhistle.

One of the existing systems that has influenced on UUhistle is Jeliot 3 program
visualization tool and its previous versions [16]. Jeliot 3 shows the execution of
Java programs as abstract animations. Jeliot 3 supports almost all Java language
features and is able to show them visually just by typing the code. Jeliot 3 can
automatically create questions related to the code being executed [17] but it does
not have any simulation features.

TRAKLA2 is an online environment containing exercises related to data structures
and algorithms [12]. In the exercises data structures are presented visually and
the algorithm itself as pseudo-code. Students manipulate the data structure by
dragging and dropping the elements in the order the algorithm proceeds. After the
exercise is done the student gets the points and can compare the submission to the
model solution. If compared with UUhistle, the abstraction level in TRAKLA2 is
much higher.

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 17

3.5 UUhistle compared with the other systems

UUhistle can be seen as a combination of the systems which were previously
presented. The implementation is different but the ideas behind UUhistle contain
many common elements. However, UUhistle is the only tool that supports both the
program simulation and visualization exercises. The comparison below is mainly
between the three presented tools and TRAKLA2 and Jeliot 3 are not included in
this comparison if not mentioned otherwise.

One of the main differences between the systems is the support of the language
features. All the three presented systems support only a very limited set of fea-
tures, mainly variables, basic arithmetics, branching and looping. In the two sys-
tems, function calls can be somehow simulated but because the call stack is not
visible, the parameter passing and return value are not clearly shown although
these are important steps. In Jeliot 3 these steps are shown but the call history
is in a separate tab. UUhistle always shows the call stack if there are function
or method calls in the program code and therefore these concepts should become
familiar. This makes it also possible to demonstrate, for example, how recursion
works in addition to the normal function calls.

The tools support the basic arithmetics and control flow structures which cover
the basics but nowadays object-oriented programming is very popular and used in
many CS1 courses. Object-oriented world contains many abstract things such as
classes, objects and references. None of the three tools can handle these. ViLLE
can show strings as references but these tools do not have exercises where classes
and objects would be used. Because these concepts are vital to understand, UUhis-
tle supports defining own classes and methods. New objects can be created and
then seen as references in the local variables. This makes it easier to understand
what classes and objects are and what a reference to an object means. Jeliot 3
also supports classes, objects and references but shows them in a slightly different
way.

While doing the exercises, sometimes it might be a good idea to go one step back
and see or do something again. Unfortunately, ViLLE is the only tool which
allows moving backwards without resetting the whole exercise. In UUhistle stu-
dents can always undo and redo the steps if needed. Especially the undo feature is
important because UUhistle allows students to make mistakes and even continue
after the wrong step although usually students undo the incorrect step straight after
the error message.

It is also important to give explanations what a specific step in the animation
means or what was the purpose of the step the student just made. Therefore

CHAPTER 3. THE UUHISTLE PROGRAM SIMULATION TOOL 18

UUhistle automatically produces a textual description of the each step as ex-
plained earlier. Only the tool by Donmez and Inceoglu seems to have some kind
of explanations but the feature is not described in the article. Although Jeliot 3
shows detailed animations, it relies also only on students’ skills to understand the
steps without any textual explanations.

Summing up, UUhistle is a more sophisticated tool for VPS exercises than the few
other tools supporting the idea of letting students to act as computer. UUhistle
can provide richer exercises by supporting more language features, allowing to
move backward and forward during the execution, giving textual feedback and
generating explanation texts of the visualized or simulated steps.

Chapter 4

Objectives

Computer-based exercises can collect data containing information such as how a
student has solved the exercise, how much time it took, what kind of mistakes the
student made etc. If there are many students using the tools, the number of the log
files can be very high. The more the data is available the more likely it is to find
something interesting in those files.

Because UUhistle collects this kind of logs and the tool has been used three years,
the logs might reveal interesting information about the usage of the tool. Our
research questions are related to this information.

4.1 Common errors

Can we recognize the common errors the students have made?

The log files contain a sequence how a student solved the simulation exercise.
This sequence also contains all the incorrect steps and makes it therefore possible
to track what kind of mistakes the students have made.

One of the objectives is to create a tool which can analyze the log files and show
at each step what kind of steps the students have made at that point. By look-
ing at that data we can see if there are steps where many students have made
the same mistake. This analysis shows also if the data is useful for this kind of
purposes.

19

CHAPTER 4. OBJECTIVES 20

4.2 Reasons for errors

What have caused the errors? Is the user interface unclear or could there be a
misconception? Can we find any new misconceptions?

After recognizing the common errors, one of the objectives is to figure out if the
errors are caused by a simple mistake, the user interface, the nature of the VPS
exercises or can we show that we have discovered similar errors that have been
reported as misconceptions in the literature. We would also like to see if the
visual program simulation arises new kind of possible misconceptions that are not
yet reported.

4.3 Creating better VPS exercises

How can we make better VPS exercises and how to improve UUhistle?

The collected data may also help to create better VPS exercises in the future. If we
notice that some errors are caused by UUhistle’s user interface, we can improve it
and in that way help students.

In case we find some common errors that can be easily recognized and there can
be a possible misconception, we can give more precise feedback in those situa-
tions.

Chapter 5

Data analysis

In this chapter we discuss what kind of data UUhistle has collected, how it has
been analyzed and what kind of challenges we had related to the analysis.

5.1 General description of the collected data

While solving the exercises, UUhistle collects all the visualization or simulation
steps to a log. This means that the steps made by students as well as the com-
puter are logged. In addition to the simulation steps, UUhistle also logs stepping
backward or forward, asking help and other kind of activities.

The log of each submission will be saved to the server when the student submits
the exercise. If the student decides not to submit the exercise, in this case the log
will be lost.

Normally, students solve the exercises in a way that they undo or start over the
exercises and continue in this way until the exercise is solved. Although a student
restarts the exercise, the log data is log data is still available if the tool itself is not
closed. Therefore the logs should cover the usage of the tool well.

5.2 The log files

The log is a simple textual representation of the steps where one line corresponds
to one simulation step. A log entry begins with a timestamp which tells how many

21

CHAPTER 5. DATA ANALYSIS 22

seconds after the beginning of the exercise the step was made. After the times-
tamp there is the name of the action or ERROR if the previous step was incorrect.
If the action was a real simulation step, then there are also value and position
information and the executor of the step which can be user or computer. The
actual meaning of value and position information depends on the action but nor-
mally they contain the element and a position where the value or the operator was
placed in the evaluation area, for example.

The following example shows a piece of a log where the code line should be
evaluated in the similar way as in Figure 3.4. The code line in this example is:
fahrenheit = 1.8 * 100 + 32

191: jump @ 2 (computer)

211: add_value 1.8 @ 0 (user)

224: add_operator * @ 1 (user)

233: add_value 100 @ 2 (user)

235: add_operator + @ 3 (user)

235: ERROR: You didn’t perform the right type of step.

238: UNDO

253: operator * @ 1 (user)

261: add_operator + @ 1 (user)

264: add_value 32 @ 2 (user)

270: operator + @ 1 (user)

276: create_var fahrenheit (user)

281: assign fahrenheit (user)

The example starts with a jump to the line 2 which was made automatically 191
seconds after the beginning of the exercise. After that the student has dragged the
value 1.8 to the evaluation area. At that point, the evaluation area was empty,
because the position is zero which means that the value is the first element in the
evaluation area and it is not inside any other element, for example as a parameter
in a function call. Then the student has dragged the multiplication operator and
the value 100 after each other to the evaluation area.

In the next step, the student should click the multiplication operator but the stu-
dent has dragged the addition operator to the evaluation area which has caused
an error. After the error, the student moved one step backward and evaluated the
multiplication operator as expected. The rest of the log contains dragging the
other elements, evaluating the operator, creating a new variable fahrenheit and
assigning the result to that.

The original purpose of the logs was to create more precise bug reports. When a
bug is reported, the bug report automatically contains the log to help reproducing

CHAPTER 5. DATA ANALYSIS 23

the bug. In many cases to reproduce a reported bug, the sequence of steps must be
done exactly in the same order as the student did or otherwise the bug can not be
reproduced. The quality of bug reports increased a lot when the log was attached
to the bug report with the student’s own explanation.

Because UUhistle was already capable of collecting logs, we got an idea to in-
clude the log also in the submission. Before this master’s thesis, the log files were
analyzed just to see some statistics such as the average time to complete an exer-
cise or what is an average number of the errors made in a specific exercise etc. but
no further analysis had been done.

5.3 The analysis

The main idea of the analysis is to go through the log files and find the most
problematic steps. Because the log files contain only the steps the student have
done, the log file must be compared with the model solution in order to find out
the expected step when an error has occurred.

The analysis is based on an algorithm which can be seen as some kind of state
machine which gets two inputs: the model solution of the exercise being analyzed
and the log files one at a time. The state machine reads the log file line by line
and after reading each line, the state machine compares if the step is correct. If
the step is correct, the pointer that points to the current correct step is increased. If
the step is undo or redo, the pointer must be decreased or increased accordingly
in order to track the execution correctly.

If the state machine recognizes an incorrect step, the incorrect step will be saved.
The model solution is transformed into a data structure where each step contain a
list where all the incorrect steps done at that step will be saved. Therefore after
all the log files have been analyzed, it is possible to count how many wrong steps
have been made at each step and what kind of steps have been tried. If the there
are steps where many students have done the same wrong step, this might indicate
a misconception or another kind of a problem.

Normally, students undo immediately after an error, but if the student continued
the execution after the mistake, only the first incorrect step would be saved and the
following steps are ignored. The tracking continues again after the student moves
backward until he reaches the last point where the execution was correct and does
the next step correctly.

The analysis tool was written in Python and it produced its output as plain text

CHAPTER 5. DATA ANALYSIS 24

that could be then opened in Excel for further analysis.

When an exercise is analyzed, the results are printed out as plain text. One simu-
lation step is printed out as one line as in the following example:

add function | 366 85 add function 0 float | 56 13 add function 0 raw input

This shows that the correct step was to drag a function call to the evaluation area.
The details of the correct step are not included because it is easy to trace the
execution by looking at the exercise and usually the wrong steps are not partially
correct as in this example. In this example, at this point there have been two
common simulation steps. 366 students (85 %) have dragged float function
to the evaluation area where 0 means that the function call is currently the only
element in the evaluation area because the position is zero. Another common step
has been to drag raw input function the evaluation area with a share of 13 %. At
this point, the correct step was to drag float function and therefore 85 % of the
students made the correct simulation step. The steps with a very low percentage
are not included because the list would otherwise be very long and contain some
steps that only a few students have tried. We are interested only the mistakes that
many students have made.

5.4 Challenges with the analysis

Although there is only one way to solve a simulation exercise, the problem is that
in some situations UUhistle allows so called shortcuts. For example, if the line to
be simulated is a simple assignment as a = 3, UUhistle will not require to drag
the value to the evaluation area but allows to create the variable and then drag
the value to the variable. If the shortcut is used, add value event is not logged
although it exists in the model solution. The longer way can also be used so the
algorithm must recognize these shortcuts or otherwise the model solution and the
log file do not match each other anymore.

Therefore, if there is a sequence of steps in the model solution where a shortcut is
possible, the state machine recognizes that and checks if the student has used the
shortcut. If the shortcut is used, then the pointer to the correct step in the model
solution is increased twice in order to skip the shortcut step which does not exist
in the log.

The exercises also contain steps where the computer makes one or more steps
automatically after the student has made a step. This kind of situation occurs, for
example, at the end of the line when the execution jumps automatically to the next

CHAPTER 5. DATA ANALYSIS 25

line. There are also so called hybrid exercises where UUhistle adds literal values
automatically to the evaluation area, for example. If a student clicks Undo button
after this kind of situation, the simulation jumps back to the state where it was
before the last step made by the student. This means the simulation can move
several steps backwards and the pointer pointing to the correct step in the model
solution must be changed accordingly.

Another problem is that in the older versions there were bugs that cause problems
in the analysis. After undoing a step the simulation might have moved two steps
backwards. Some steps were also not logged at all if the step caused internal
errors in UUhistle. The state machine can recognize some of these situations
automatically and insert the missing steps or move two steps backwards but this
is not always possible which leads to a situation where the analysis fails and the
file must be fixed manually.

If the analysis failed because of an incorrect log file, the log file is automatically
opened to locate manually the reason. The tool shows at which step the syn-
chronization with the model solution failed and the incorrect log entry is usually
near that step. In the most cases, the file can be corrected by adding or removing
one UNDO line or removing a duplicated step. These modifications are necessary
to a small number of the log files especially collected with the older versions of
UUhistle.

All these aspects together do the analysis not that straightforward as one could ex-
pect. The analysis tool must be able to emulate UUhistle’s behavior quite exactly
or otherwise the analysis will fail. If there had been a sequence number in the log
files which refers to the model solution, it would have helped the analysis a lot
but however the analysis tool worked well and we could get the results we were
looking for. The results are presented in the next chapter.

Chapter 6

Results

In this chapter we present the results from the analysis. We have collected the
errors to four different categories and for each error we explain what the students
have done, what they should have done and what may have caused the error.

6.1 Background for the data

The results presented in this chapter are processed from the data that has been
collected in 2010, 2011 and 2012. UUhistle has been used in Aalto University’s
course T-106.1208 Basics of Programming Y (Python) where about 45 percent of
the students did not have any kind of previous knowledge of programming.

This course is arranged twice in a year. First in the spring semester and then as a
summer course but the course arrangements and the backgrounds of the students
are different in the summer and therefore we have used only the data collected in
the spring semesters. The number of the participants has been approximately
between 600 and 700 students. The exact numbers are reported in Appendix
A.

In 2010, we used UUhistle for the first time and the UUhistle exercises were not
mandatory for the students. The UUhistle exercises were also in a completely
different system where the mandatory programming exercises were available. Be-
cause the UUhistle exercises could be seen as extra material but the points were
required to get the highest grades, the number of students using UUhistle in 2010
was smaller than in 2011 although the number of the participants in the course
was almost equal.

26

CHAPTER 6. RESULTS 27

In 2011 and 2012, UUhistle exercises were in Goblin online assessment system
instead of TRAKLA2 system together with the programming exercises and the
UUhistle exercises were also a part of the course and therefore all the participants
have at least tried UUhistle. To pass the course the students had to get at least
the minimum points from each exercise round and usually the UUhistle exercises
were an easy way to get some points and therefore there is more data available
from these two years.

When comparing the students between these three years by using the background
questionnaire the students filled when the course started, the answers are quite the
same. In the spring 2010 when the UUhistle exercises were not mandatory, the
students who used UUhistle were a bit more motivated and got better grades than
the students who did not use UUhistle. In their previous knowledge there were no
differences.

This might mean that there is a slight difference between the students in 2010 and
the next two years which may affect the result presented in the next sections.

We analyzed only the submissions where the student had solved the exercise cor-
recting all the errors because otherwise the analysis tool would not have worked
correctly. There were also a small number of log files that needed to be skipped
because the files could not be fixed in a reasonable time. In some situations,
UUhistle had stepped two steps backwards after undo because of a bug in the
tool. There were also steps that were logged twice and this caused problems.
These problems were hard to recognize automatically during the analysis process
and after this kind of problem the analysis tool can not trace the execution any-
more correctly.

The number of analyzed log files is still very high, the average count of analyzed
log files is 95 percent and there are only five cases where the percentage is below
90 percent. The lowest percentage is in exercise 4.4 in the year 2010, 81.6 percent.
The average number of analyzed log files per exercise in each year is about 500
and the total number of the log files is over 24000. The exact numbers are available
in Appendix B.

6.2 Common errors

We assume that there are four main reasons behind the errors:

• Simple mistakes

• Errors caused by the user interface

CHAPTER 6. RESULTS 28

• Errors caused by the strict simulation order

• Errors caused by a misconception

Simple mistakes mean that if the simulation exercise consists of many steps, it is
possible (and quite probable) that at some point a student just makes a mistake
without any particular reason.

Errors caused by the user interface cover the errors that the students have made
most probably because of some issues in the user interface instead of they have
understood something incorrectly. The problem might be, for example, that they
know how the execution should proceed but they do not know how to simulate the
step in UUhistle.

Errors caused by the strict simulation order contain the errors that are likely caused
by the nature of the simulation exercises. The simulation steps must be made in a
very strict order and because the execution model is not that clear to all students,
this may cause errors.

Errors caused by a misconception is the most interesting reason for the errors. We
would like to show that we can find similar errors which have been reported as
misconceptions in the literature. By finding the errors of this type we can suspect
a possible misconception based on the earlier research but we can also state that
the reported misconceptions exist.

The errors we report here are most likely caused by all of those four reasons, but
we presume that the share of the simple mistakes is very low and the three other
reasons are more likely. We have not reported all errors because the number is
very high (normally there are at least two or three incorrect steps in every step)
but we have chosen the most common errors we could also explain with the help
of the literature and other knowledge.

In this section, we report the discovered common errors grouped to four categories
based on the topic: basics, branches and loops, functions and object-oriented pro-
gramming. Each subsection starts with a table which shows how many percent
of the students have made the described error instead of the correct simulation
step.

The percentage tells how many students have done the incorrect step as their first
simulation step at that particular point. This means that if the first simulation step
was incorrect, the students click undo and try again with a wrong step, only the
first wrong step is taken account.

We assume that usually the first step is the one that the student really thinks to
happen next and the logs reveal that if the students do not know what to do next,

CHAPTER 6. RESULTS 29

they can try many wrong steps and test which simulation step might be the correct
one. Because the students are not thinking as much as they should in this situation,
counting all incorrect simulation steps might lead to inaccurate results. The same
analysis was also done so that the algorithm took all the steps and not only the
first one. This did not affect the most common errors but the number of different
incorrect steps increased per one simulation step. This means that if the first step
was not correct, the students tried many other incorrect steps before they finally
found the correct one.

6.2.1 Basics

This subsection contains common errors about the basics of programming, such
as the evaluation order and assignments. The most common errors are presented
in Table 6.1.

Table 6.1: The most common errors in the basics of programming

Error
Percentage

2010 2011 2012
B1: Forgetting to assign (ex. 1.2) 9 % 0 % 0 %
celsius = 100

fahrenheit = 1.8 * celsius + 32

B2: Starting always by creating a new variable (all ex-
ercises)

varies 0 %

fahrenheit = 1.8 * celsius + 32

B3: Forgetting to evaluate multiplication (ex. 1.2) 53 % 22 % 29 %
fahrenheit = 1.8 * celsius + 32

B4: Inverted assignment (ex. 1.3) 27 % 26 % 38 %
first = second

B5: Multiplying a float with a function (ex. 1.6) 40 % N/A N/A
fahrenheit = 1.8 * float(celcius) + 32

B6: Starting by dragging float function (ex. 1.6) 9 % 22 % 21 %
fahrenheit = 1.8 * float(celcius) + 32

B7: Incorrect order in a nested statement (ex. 1.7) 20 % 17 % 13 %
value = float(raw input(’Give a value:’))

CHAPTER 6. RESULTS 30

B1. Forgetting to assign

celsius = 100

fahrenheit = 1.8 * celsius + 32

What should have been done? At the first line students should create a new vari-
able and then assign the value 100 to the variable celsius. After that the execu-
tion automatically jumps to the next line.

What have students done? Many students have dragged the correct value 100 to
the evaluation area but instead of assigning it to a variable, they have jumped to
the next line or dragged the multiplication operator to the evaluation area.

What might have caused this? Because this is the first simulation exercise, the
most probable reason is that the usage of UUhistle is not clear. Also the meaning
of the assignment might not be fully understood at this point.

There were step-by-step instructions and a video available how to solve this first
simulation exercise, but however, it seems that the instructions were not clear
enough or the students did not read them carefully. The students were asked to
fill a course feedback form and there was a question did they watch the videos
explaining how to use UUhistle. According to the feedback about a half of the
students have watched at least one video in 2010 and 2011.

How have we changed the exercise? After the year 2010 in addition to the in-
structions before the assignment, UUhistle also showed step-by-step instructions
how to proceed throughout the exercise. This made it easier to start and the same
mistake could not be found in 2011 and 2012.

B2. Starting always by creating a new variable

For example: fahrenheit = 1.8 * celsius + 32

What should have been done? If there is a code line which assigns the right-
hand side to a new variable, the right-hand side must be evaluated before the new
variable can be created. This is because in Python a variable is always bound to a
value and therefore there can not be an uninitialized variable.

What have students done? Almost in all exercises there were many students who
have always started simulating that kind of lines by creating the variable first. It
seems that they did not learn that a variable can not be created if the next step
is not an assignment because the same mistake existed throughout the exercises.

CHAPTER 6. RESULTS 31

The percentage of this error was between 20 and 50 which describes the severity
of this problem.

What might have caused this? Because the statements are evaluated from left to
right, it is natural to start by creating a new variable first. It is also a language-
specific case that in Python there can not be variables without a value.

How have we changed UUhistle? We noticed this was a major problem and a
usability issue and therefore we changed UUhistle a bit before the course started
in 2012. In the new version the step to create a new variable was removed and
now variables are created by dragging the initial value to the variable area and
selecting the name for the new variable. Now when students need the value to be
assigned, they know better when to create a new variable, there is one step less
and the user interface is more intuitive to use.

Because this error was very common with a high percentage and in 2012 this
error could not occur anymore, this can also affect the percentages of the other
errors.

B3. Forgetting to evaluate multiplication

fahrenheit = 1.8 * celsius + 32

What should have been done? After the multiplication 1.8 * celsius has been
dragged to the evaluation area, the multiplication should be evaluated before the
addition operator is dragged next to the result of the multiplication.

What have students done? Many students have dragged the addition operator to
the evaluation area before evaluating the multiplication.

What might have caused this? Students should know the correct calculation order
(multiplication has higher precedence than addition) but they did not realize that
the multiplication should have been evaluated already before adding the addition
operator.

How have we changed the exercise? After the year 2010 in addition to the instruc-
tions before the assignment, UUhistle also showed instructions how to proceed
while solving the exercise. This has reduced the number of mistakes but obvi-
ously not all the students have read the next step carefully because the percentage
is still between 22 and 29.

CHAPTER 6. RESULTS 32

B4. Inverted assignment

first = second

What should have been done? If there is an assignment where the left-hand side
is a variable and the right-hand side is also a variable, the value of the right-hand
side variable should be assigned to the left-hand side variable.

What have students done? The students have assigned the value from the left-hand
side variable to the right-hand side variable.

What might have caused this? If there are only two variables separated by an
assignment operator, it might not be clear which variable is the source and which
the destination. It is interesting that still in the 9th round about 10 percent of the
students made the same mistake. This error has also been quite common while the
students have solved the coding exercises and is well known in the literature.

How have we changed the exercise? This exercise has not been changed at all.
We do not know why the percentage has increased in 2012.

B5. Multiplying a float with a function

fahrenheit = 1.8 * float(celcius) + 32

What should have been done? To be able to evaluate the multiplication, both of
the operands should be values. Therefore float type conversion function should
have been evaluated before the multiplication.

What have students done? Students have tried to evaluate the multiplication so
that the second operand is a function call.

What might have caused this? Because the type conversion functions only change
the type without any concrete effects to the value itself, students may think that it
is only a wrapper that tells the value should be handled as a float without knowing
that float is a function. At this point, functions are also quite unfamiliar to the
students.

The information about this error is not available from the years 2011 and 2012
because a new error dialog was added to prevent evaluating an operator with in-
correct parameters. Unfortunately, UUhistle did not log that step at all.

CHAPTER 6. RESULTS 33

B6. Starting by dragging float function

fahrenheit = 1.8 * float(celcius) + 32

What should have been done? Before adding float function call to the evaluation
area, the value 1.8 and multiplication operator should be dragged to the evaluation
area first.

What have students done? Students have dragged the float function to the eval-
uation area first without adding the preceding elements.

What might have caused this? When calculating this kind of statements with pen
and paper, the evaluation order is not strict and evaluating a function first is usu-
ally a good place to start if the statement can be evaluated after that. Students may
have tried to apply the same strategy here without realizing that the computer eval-
uates the statements always in a strict order and therefore the evaluation should be
started by adding the value 1.8 to the evaluation area.

How have we changed the exercise? We have not changed this exercise. We
cannot explain why the percentage have increased in 2011.

B7. Incorrect order in a nested statement

value = float(raw input(’Give a value:’))

What should have been done? If there are nested function calls, the outermost
function call should be dragged to the evaluation area first and then construct the
inner function call as a parameter. This corresponds to the way how the return
value of the inner function will be a parameter for the outer function. In UUhistle
this is also the only way to simulate this step.

What have students done? Many students have started this line by dragging raw -
input to the evaluation area instead of float.

What might have caused this? The students might have thought that they can add
the result of raw input to float function later although this is not possible. The
nested structures are also difficult to understand at this point and for some students
they cause trouble throughout the course although the idea should be familiar from
mathematics.

CHAPTER 6. RESULTS 34

6.2.2 Branches and loops

This subsection contains the most typical errors when simulating if statements or
while loops. The errors are presented in Table 6.2.

Table 6.2: The most common errors related to branches and loops

Error
Percentage

2010 2011 2012
BL1: Dragging print instead of jumping (ex 2.2) 23 % 22 % 25 %
if divisor == 0:

print ’Chuck Norris divides by zero, you do not.’

else:

print 1000 / divisor

BL2: Jumping to wrong branch (ex 2.2) 11 % 17 % 17 %
if divisor == 0:

BL3: Executing wrong branch without jumping there
(ex 5.1)

52 % 35 % 45 %

if not information ok(place, distance):

return False

BL4: Assigning result back to variable (ex 2.2) 8 % 8 % 6 %
if divisor == 0:

BL5: Assigning result back to variable (ex 3.2) 8 % 0 % 3 %
while i < 7:

BL1. Dragging print instead of jumping

if divisor == 0:

print "Can’t divide!"

else:

print 1000 / divisor

What should have been done? After the boolean value is in the evaluation area as
the result of the comparison, the student should click the next line because now
there are two possibilities where the execution moves.

What have students done? Many students have dragged the print statement to
the evaluation area before jumping to the correct line. The same effect with almost
the same percentage is also visible with while statements.

CHAPTER 6. RESULTS 35

What might have caused this? Normally, UUhistle jumps to the next line after
completing the current line. However, there is an exception: if there is a branch,
the student must click the next line in order to show that the idea of if or while
statement is clear.

At this point, UUhistle flashes the line number bar on the left-hand side of the
code and also shows a text in the status area the student should select the next
line. Although UUhistle tells what to do next, it seems that many students did not
notice this or understand the next step correctly.

BL2. Jumping to wrong branch

if divisor == 0:

What should have been done? Because in this case the result of the comparison
was False, students should have jumped to else branch.

What have students done? Although the result was False, some students have
proceeded to the following line as the result had been True.

What might have caused this? It seems that the students have not understood how
the result of the if statement affects the control flow. Some students may have
believed that all lines are always executed.

BL3. Executing wrong branch without jumping there

if not information ok(place, distance):

return False

What should have been done? Because the result of the return value was True and
inverting it causes it to become False, the execution should pass the line inside
if statement and continue below that. In this case there was not elif or else
blocks.

What have students done? A high number of students have returned value False
straight after evaluating not operator without even jumping to the line containing
return statement.

What might have caused this? The combination of using the return value of the
function and then inverting the result may have confused the students. But because
the error is from the fifth round where functions and branches should be familiar,
the percentage of the students seems to be very high.

CHAPTER 6. RESULTS 36

BL4. Assigning result back to variable

if divisor == 0:

What should have been done? After evaluating the comparison, the student should
jump to the correct line and continue the execution.

What have students done? Some students have assigned the boolean value back
to the variable divisor replacing the original value.

What might have caused this? The comparison operator looks very similar to the
assignment operator and it is possible to misinterpret the statement. Throughout
the course there are students who do not remember that == should be used when
comparing values and sometimes somebody tries to assign a value by using ==
operator. Also in mathematics there is normally only = operator which makes ==
operator hard to remember and understand the difference between the two opera-
tors.

BL5. Assigning result back to variable

while i < 7:

What should have been done? As in the previous case, after resolving the value
of the statement, students should select the next line.

What have students done? The boolean value has been assigned back to variable
i.

What might have caused this? Now the operator in the statement is < and therefore
there should not be confusion with the assignment operator. Still some some
students may have thought that this comparison changes the value of the variable
or the result of the comparison should be saved. Most likely this error is caused
by a simple mistake.

6.2.3 Functions

This subsections presents the most common errors that students have made in the
exercises related to function calls. The errors are in Table 6.3.

CHAPTER 6. RESULTS 37

Table 6.3: The most common errors related to functions

Error
Percentage

2010 2011 2012
F1: Executing function instead of defining it (ex. 4.2) 17 % 15 % 16 %
def ask euros():

F2: Constructing a new function call instead of assign-
ing return value (ex. 4.2)

20 % 16 % 29 %

text = ask euros()

F3: Creating parameter variable to wrong frame (ex.
4.3)

6 % 7 % 11 %

def calculate(first, second):

F4: Creating new function call instead of passing pa-
rameters (ex. 4.3)

29 % 33 % 45 %

def calculate(first, second):

F5: Trying to start function call before evaluating pa-
rameters (ex. 4.3)

7 % N/A 10 %

result = calculate(result, result + 1)

F6: Creating a variable for return value to wrong frame
(ex. 4.3)

17 % 27 % 24 %

return second * 2 + first

F7: Assigning return value back to variable instead of
returning it (ex. 4.4)

5 % 9 % 8 %

return intermediate * intermediate

F1. Executing function instead of defining it

def ask euros():

What should have been done? When the program starts, UUhistle goes through
the functions in the same way as the interpreter. When coming first time to a
line defining a function, the student should click the Functions panel on the right
side of UUhistle and add the function there by selecting it from a drop-down
menu.

What have students done? Some students have created a new frame for the func-
tion which is not even called yet or start to simulate the first line inside the function
although the current line points to the definition of the function.

What might have caused this? The parsing phase is normally totally invisible to
the students and therefore it can be hard to understand what should be done. Al-

CHAPTER 6. RESULTS 38

though the visualization was changed so that the whole function is highlighted in
the code panel instead of only the definition line and in the information area there
is a help link available, these changes have not changed the behavior much.

F2. Constructing a new function call instead of assigning return value

text = ask euros()

What should have been done? After returning to the line where the function call
was started, the return value should be assigned to the variable on the left-hand
side of the assignment statement.

What have students done? The students have started to construct the function
call again by dragging the function call to the evaluation area or creating a new
frame.

What might have caused this? It seems that the students can not understand
the function call and its purpose totally. After jumping back the students think
that line should be executed in a similar way as they arrived to that line at the
previous time. They did not understand that execution of that line was inter-
rupted and should be continued after getting the result from the function that was
called.

How have we changed the exercise? Since 2011 there has been a help dialog avail-
able which explains how to simulate function call. The percentage of this mistake
decreased in 2011 but we can not explain why the percentage has increased that
much between 2011 and 2012 because the exercise is the same.

F3. Creating parameter variable to wrong frame

def calculate(first, second):

What should have been done? After calling the function the execution jumps to
the line containing the definition of the function. At that point, the student should
create a new frame for that function call.

What have students done? Instead of creating a new frame, the students have
created the parameter variable to that frame where the function was called.

What might have caused this? The purpose of the frame and its relation to a
function call seems to be unclear or the simulation step to create the new frame is
unclear.

CHAPTER 6. RESULTS 39

F4. Creating new function call instead of passing parameters

def calculate(first, second):

What should have been done? When a new stack frame is created, the next step
is to pass the parameters to parameter variables. This is done by creating a new
variable to the new frame and dragging the correct parameter from the function
call to that variable as shown in Figure 6.1.

Figure 6.1: In UUhistle the parameter passing process is simulated by drag-
ging the parameters from the function call and assigning them to the corre-
sponding parameter variables in the frame above the function call.

What have students done? Some students have started to construct a new function
call in the new frame instead of passing the parameters.

What might have caused this? The most likely reason is that the students did
not know what they should do although in 2011 and 2012 there is a help dialog
available. The students have dragged a new function call to the evaluation area
because it is the most similar element to the current line.

How have we changed the exercise? Between the years 2011 and 2012 this ex-
ercise has not been changed. We do not have an explanation why the percentage
have increased that much in 2012.

CHAPTER 6. RESULTS 40

F5. Trying to start function call before evaluating parameters

result = calculate(result, result + 1)

What should have been done? The second parameter of the function was a state-
ment that must be evaluated before starting the function call. When a function call
starts, all the parameters must be single values.

What have students done? The students have tried to start the function call before
evaluating the second parameter.

What might have caused this? The students may thought that they can pass a
statement as a parameter and the value is evaluated later. A very common misun-
derstanding in the exercise sessions is that inside a function they can also access
the local variables of the other functions. This indicates that the parameter passing
and the role of the local variables are not clear.

F6. Creating a variable for return value to wrong frame

return second * 2 + first

What should have been done? After the return value has been evaluated, the return
value should be dragged to the frame below on the top of the active call as shown
in Figure 6.2. When the value has been dragged to the correct place, the topmost
frame disappears and the function call is replaced with the return value.

What have students done? Instead of returning the value, some students have
created a new variable for the return value in the active frame. The name of the
variable is the same as where the return value should be assigned in the caller’s
frame. In the spring 2010 and 2011 UUhistle allowed to create new variables only
to the topmost frame.

What might have caused this? The students have understood that the return value
should be assigned somewhere but they have not realized in which frame the return
value should be saved. Because UUhistle did not allow to create a new variable
to the lower frames, the topmost frame might have been thought to be a good
place.

This kind of mistake does not appear in the previous exercise where the return
value taken from a variable instead of evaluating a statement. In that exercise, the
students did not have problems to simulate this step and therefore it is not probable
that the students did not know how to simulate the return step.

CHAPTER 6. RESULTS 41

Figure 6.2: Returning the return value is simulated by dragging the return
value from the upper frame on top of the active function call in the lower
frame. After that the function call will be replaced with the return value and
the topmost frame disappears.

F7. Assigning return value back to variable instead of returning it

return intermediate * intermediate

What should have been done? After evaluating the return value, it should be
returned to the frame where the function was called.

What have students done? Some students have assigned the return value back to
that variable which was used to calculate the return value instead of returning the
value.

What might have caused this? In this exercise a local variable was used to cal-
culate the return value. Some students may believe that the local variable should
also be updated although it will not be read anymore inside the function and can
not be accessed after the function call has ended.

6.2.4 Object-oriented programming

This subsection contains the most typical errors related to the object-oriented ex-
ercises. The errors are presented in Table 6.4.

CHAPTER 6. RESULTS 42

Table 6.4: The most common errors related to object-oriented programming

Error
Percentage

2010 2011 2012
OO1: Calling method without reference (ex. 9.2) 18 % 38 % 33 %
car1.fuel(40)

OO2: Creating new object instead of assigning refer-
ence (ex. 9.2)

12 % 6 % 14 %

car3 = car1

OO3: Assigning reference to uninitialized object (ex.
9.2)

6 % 12 % 9 %

car1 = Car(45)

OO4: Creating incorrectly instance variable (ex. 9.2) 7 % 10 % 11 %
car1 = Car(45)

OO5: Dragging reference to existing object instead of
creating new (ex. 9.2)

16 % 7 % 18 %

car2 = Car(60)

OO6: Creating local variable instead of instance vari-
able

8 % 7 % 3 %

self. name = firstname

OO7: Returning object reference instead of value of in-
stance variable (ex. 9.4)

6 % 15 % 15 %

return self. profession

OO1. Calling method without reference

car1.fuel(40)

What should have been done? When starting to construct a method call, the first
step is to drag to the evaluation area a reference to that object whose method is
being called. After the reference is in the evaluation area, the method call will be
dragged next to the reference.

What have students done? Some students have started this line by dragging the
method call first to the evaluation area.

What might have caused this? There are two possible explanations for this mis-
take. Students have not understood the difference between function and method
calls or the Python way of declaring a method with self parameter is misleading
although the evaluation order is similar to the code where the method is called.
In addition to these, students may have not thought that it is not possible to know

CHAPTER 6. RESULTS 43

from which class the method will be found before the reference is available.

How have we changed the exercise? We have not changed the exercise. Since the
year 2011 UUhistle offers more help with methods but still the percentage of the
error has increased. The reason for this is unknown.

OO2. Creating new object instead of assigning reference

car3 = car1

What should have been done? Create a new variable car3 and assign to that
variable the same object reference that is assigned to the variable car1.

What have students done? Some students have started this line by creating to the
heap a new object although this line does not create any new object instances.

What might have caused this? The concept of references can be unclear to the
students although in the previous exercise rounds lists and dictionaries have been
handled via references. Some students may have thought that this line would
generate a similar object as in car1 to variable car3 by creating a new object not
having realized that the variable contains only a reference.

OO3. Assigning reference to uninitialized object

car1 = Car(45)

What should have been done? After the object is created to the heap, the reference
should be dragged to the evaluation area and start to call init method which
initializes the created object.

What have students done? The students have created a new variable car1 after
they have created a new object to the heap instead of starting to call init

method which should be executed before the reference to the object will be ex-
posed.

What might have caused this? The code line does not have any kind of clue that
init method is called at this point because this is normally taken care by the

interpreter. Students might think that after the object is created, the right-hand
side is evaluated and the reference can be assigned to the variable. However, this
does not explain what the students would do with the parameter 45 in order to
initialize the object.

CHAPTER 6. RESULTS 44

OO4. Creating incorrectly instance variable

car1 = Car(45)

What should have been done? As in OO3, after the object is created to the heap,
the reference should be dragged to the evaluation area and start to call init
method which initializes the created object.

What have students done? After the new object is created to the heap, instead
of creating a new local variable as in OO3, they have created a new instance
variable car1 to the object. In this exercise the internals of the class were not
shown and therefore the students did not have to create or modify any instance
variables.

What might have caused this? The roles of instance variables and local variables
might not be clear at this point because the instance variables will be presented
in the next exercises. Some students may have believed that the variable in the
left-hand side is somehow a part of the created object.

OO5. Dragging reference to existing object instead of creating new

car2 = Car(60)

What should have been done? At this line, the student should create a second
Car object instance to the heap and initialize the created object using init

method.

What have students done? Some students have dragged a reference to the first Car
object to the evaluation area instead of creating a new instance.

What might have caused this? The students may have not realized that this kind
of line creates a new object always. The students may have thought that because
they already have one Car object they could initialize it somehow again.

OO6. Creating local variable instead of instance variable

self. name = firstname

What should have been done? A new instance variable name should be created
to the new object that is being initialized. The value in the parameter variable
firstname is assigned to that instance variable.

CHAPTER 6. RESULTS 45

What have students done? Instead of creating a new instance variable, some stu-
dents have created a local variable to the stack frame.

What might have caused this? The concept of classes, objects and instance vari-
ables are very different compared with the exercises in the previous eight rounds
and it might be hard to understand first how the object-oriented world is con-
structed.

How have we changed the exercise? In the version which was used in the spring
2012, there is a clear text inside an uninitialized object that the instance variables
should be created here. This new text most probably explains the small percentage
in 2012 although also in 2011 there was a pop-up window that explained how to
create a new instance variable when a student jumped to that line. This pop-up
window was also used in 2012 together with the new text.

OO7. Returning object reference instead of value of instance variable

return self. profession

What should have been done? In this line students should follow the reference in
variable self and return instance variable profession from that object. The
method is a normal getter which contains only this one line.

What have students done? Some students have returned the reference to the object
instead of returning the value of the instance variable.

What might have caused this? Most likely the students have not realized the pur-
pose of this method or it is also possible that the simulation sequence is not clear.
The reference should only be followed, not to be dragged anywhere although this
will not explain why the students have returned the reference to the object instead
of adding it to the evaluation area.

6.3 Explanation texts as a part of the exercises

The log files also give a possibility to see how many students have read the feed-
back and explanation texts UUhistle provides. In 2012 we added some new di-
alogs which explained why some simulation steps are incorrect if the students did
some incorrect simulation steps that we recognized to be a possible caused by a
misconception. These dialogs were not shown automatically but students could

CHAPTER 6. RESULTS 46

click a link and read the explanation in a pop-up window. Figure 6.3 shows an ex-
ample of the situation after an incorrect step where UUhistle offers an explanation
why the step was incorrect.

When we analyzed how many students read those explanations, the percentage
seems to be extremely low. We made this analysis only to the data collected in
2012 because before that UUhistle did not give that much feedback.

In program animation exercises where students only watch the animation, UUhis-
tle gives a possibility to open an explanation containing an automatically gener-
ated explanation of the previous step. A total number of students using this feature
at least once during the whole course is 219, which is 37 % of the students. This
means that over a half of the students did never read any of these explanation
texts.

While a function call is simulated, UUhistle always shows a link to a help text
explaining how a function call works and how the different steps are simulated.
The number of students who read this help text is exactly the same as the previous
number, 219. Figure 6.3 shows a similar link to the help for method calls.

Those explanations were read much more often if compared with the explanation
texts related to the possible misconceptions. We analyzed four different situa-
tions which were easy to track from the log files and where UUhistle provides an
explanation why the simulation step was incorrect.

One of the most common simulation errors is to execute a single statement in a
wrong order. We added an explanation which tells why the operators must be
evaluated and dragged to the evaluation area in a strict order. The link to this
explanation will become visible, for example, after the error B3 (Forgetting to
evaluate multiplication). Totally 594 students made this mistake during the whole
course at some point but only 35 students (6 %) ever read the explanation why the
simulation step they just did was not correct.

The percentages of the three other explanations for a possible misconception are
even lower. 159 students made the error F3 (Creating parameter variable to wrong
frame) during the course but only one student was enough interested why it was
not possible to create the parameter variable to the same frame where the function
was called and read the explanation.

Two possible misconception related to object-oriented programming covered the
errors OO1 (Calling method without reference) and OO2 (Creating new object
instead of assigning reference). 275 students encountered the first error and 66
students the second error. There were only 3 students who read the explanation
for the first error and nobody read the explanation for the second error.

CHAPTER 6. RESULTS 47

Figure 6.3: After an incorrect simulation step which might indicate a mis-
conception UUhistle has a few built-in explanations discussing what was
wrong with that step and why. The first link in the status area opens the ex-
planation of the mistake and the second link shows a general help for sim-
ulating a method call which is always available while simulating method
calls.

Chapter 7

Discussion

In this chapter we discuss the results we got, compare the results with the liter-
ature and consider how to improve the visual program simulation exercises and
UUhistle in order to help students realize they have understood something incor-
rectly.

7.1 Reasons for the errors

For the future development of UUhistle and visual program simulation exercises
and VPS tools in general, it is important to recognize whether the errors have oc-
curred because of the UUhistle’s user interface, are the errors related to simulation
or is there a reported misconception behind the error.

We do not want to accomplish a situation where students would not make any
mistakes because then there would not be anything new to learn. However, what
we would like to achieve, is to minimize the number of the errors caused by the
UUhistle’s user interface. If students do not have to struggle with the minor issues
related to the UI, they have more time to concentrate to the important aspects of
the program execution that we would like to teach them.

7.1.1 Errors caused by the user interface

Many of the errors in the category Basics have most likely occurred because of
the new environment. All errors in this category except one come from the first
exercise round which means that the knowledge of programming in general is

48

CHAPTER 7. DISCUSSION 49

low and the tool is still unfamiliar. UUhistle requires to simulate the first as the
all exercises in a strict order. And when the students are still learning the basics
of programming and how to use UUhistle, it is quite natural that students make
mistakes.

The error B1 (Forgetting to assign) in Exercise 1.2 is a good example of an error
that disappeared after improving UUhistle. Since year 2011 UUhistle guided the
students in the first simulation exercise and told step-by-step what to do next as
shown in Figure 7.1. This helped to understand how to use UUhistle and the
percentage of the error B1 dropped from 9 percent to zero.

Figure 7.1: UUhistle in tutorial mode showing always what to do next. If a
student clicks Show where link, UUhistle highlights the element.

This means that when a student should do something new, it is a good idea to give
a hint what to do to avoid unnecessary mistakes. After the simulation step is told
to the student, we can assume in the later exercises the student should know how
to simulate the step.

The error B3 (Forgetting to evaluate multiplication) in Exercise 1.2 is an example
where the given hints do not always help. Since the year 2011 UUhistle told
in the status area to evaluate the multiplication at that point when the students
have dragged the addition operator to the evaluation area. The percentage has
dropped from 53 % to 22 – 29 % but not below that. This possibly means that all
students do not pay enough attention to the status area which contains important
information throughout the exercise such as instructions, help links and links to
explanations which explains why some simulation steps are not correct. We also
noticed that the students do not click the links to open the help and explanation
dialogs UUhistle offers. The visibility of this area and its contents should be
improved in the future.

The error BL1 (Dragging print instead of jumping) in the Exercise 2.2 seems
to be also related to the user interface. At this step students should first time
select to which line the execution jumps. After evaluating if statement there are

CHAPTER 7. DISCUSSION 50

two possible lines and UUhistle requires the student to choose the line instead of
jumping automatically. If there is a branch, the line number bar flashes and in
the status area there is an instruction to select the next line. One fourth of the
students may have not noticed this because they have proceeded the execution
as the jump would have already happened. In addition to the current visual and
textual indication a new pop-up dialog may help students. When a student must
do this simulation step at the first time, UUhistle could show a message what to
do next and explain how UUhistle indicates this.

One of the biggest changes is related to the error B2 (Starting always by creating a
new variable). This error is a combination of the UI and the evaluation order. The
old version allowed to create an empty variable if the next step was an assignment
which was not exactly correct because in Python a variable is always bound to a
value and the step should therefore be atomic. The students did not know when it
was allowed to create a new variable and they thought it is allowed to create a new
variable always at the beginning of a line. This problem did not disappear after
the first exercise rounds and almost a half of the students made this mistake in
some exercises. We recognized this problem and it was fixed in the version used
in 2012 as described in the Chapter 6. This helped to solve one of the major errors
related to the user interface and made it more intuitive to use.

7.1.2 Errors related to previously reported misconceptions

Basics

The visual program simulation involves very different strategies than the usual
coding exercises. This means that the errors the students make might be com-
pletely different than those when they write code by themselves. But however,
VPS exercises seems to expose many same misconceptions that have been re-
ported earlier in another context.

The first error we reported in Chapter 6 that is present in the misconception litera-
ture is the error B4 (Inverted assignment). This misconception is already reported
in the 1980s by Du Boulay [4] and Putnam et. al [20]. One of the later studies
of the same misconception is made by Ma et al. in 2007 [13]. Simon has also
discussed how hard assignment statements can be for the students [26]. He found,
for example, 71 % of the students who had completed a diploma in IT thought the
statement an assignment statement always assigns from right to left is false.

This misconception is interesting because students do not have any problems to
understand assignment statements if the right-hand side is an expression to be

CHAPTER 7. DISCUSSION 51

evaluated or a literal. But if the right-hand contains only a name of a variable,
students get confused. It is also interesting that there were students in the courses
we analyzed who did not learn the right order during the course and did the same
mistake still in the last exercise round. Of course it is possible to make a simple
simulating mistake but because the misconception is well known, the percentage
of the students making this mistake is quite high (27 – 38 %) and this case is easy
to recognize, it would be a good idea to add to UUhistle a specific explanation
which would be shown if a student made this mistake.

Branches and loops

The idea of if clause is pretty simple: there is a condition which is evaluated and
according to the result, the execution will jump to branch A or B where the A is
the code block inside the if statement and B is else block or the code below if
statement if else block does not exist.

There are two errors, BL2 (Jumping to wrong branch) and BL3 (Executing wrong
branch without jumping there) where the students have not understood which line
is to be executed next.

Sleeman et al. have studied the problems the students had on an introductory
course where Pascal programming language was used. They have reported a
few misconceptions related to if statements. In the first error, the students have
thought that both THEN and ELSE are executed and in the second error that THEN
statement is always executed whether the condition is true or false [27].

In our exercise where the error BL2 occurred, the condition was False and there-
fore the students should have jumped to else block in order to avoid dividing by
zero. Nevertheless 11 – 17 % of the students have jumped to inside if statement
as the condition had been True. This means that they have not understood cor-
rectly how if statement is used to control the program execution. The error may
be related to the observations Sleeman et al. have reported.

In the error BL3 if statement did not have elif or else blocks and therefore the
students should have jumped over the code inside if statement because the condi-
tion is first True but after evaluating not operator the result is False. 35 – 52 %
of the students have decided to execute return statement inside if statement
without even jumping to that line. Somehow the students have misunderstood
how the execution continues or not operator have confused them.

The error BL4 (Assigning result back to variable) shows a possible confusion
with equality and assignment operators. This is a real problem because while

CHAPTER 7. DISCUSSION 52

students are solving coding exercises too many students can not remember that
they should use == operator in if statement. This misconception is well known
in the literature. The reason for BL4 is probably that the students have found
operator and evaluated the result but after that interpreted the meaning of the
operator incorrectly and made an assignment.

We have no evidence that the students have a misconception where the result of
the condition is always assigned back to the variable or otherwise saved although
the error BL5 is very similar to BL4 but instead of if statement there is while
statement. The percentage of BL5 is much lower (0 – 8 %) and can be explained
as a pure simulation mistake.

In order to react these errors containing possibly misconceptions, UUhistle could
give better feedback in these situations. Currently, students can read a static text
after jumping to wrong line but this could be changed to be more interactive and
have different cases for if and while statements. If a student assigns a value to a
variable after evaluating == operator, this can be easily recognized and UUhistle
could show an explanation why the step was not correct by explaining the differ-
ence between = and == operators.

Functions

In the first error related to functions, F1 (Executing function instead of defining
it), students do not understand properly the phases when an interpreted program
is started. The interpreter starts to scan the code and normally finds functions and
below all functions a call to main function. During this process, the interpreter
knows which functions are defined but the functions are not executed because they
have not been called yet. In the error F1 some students have thought that when
the program starts, the first function in the code will be executed and have started
to execute the code inside the function instead of just defining the code although
UUhistle have instructed to do so since spring 2011. UUhistle showed a pop-up
dialog when the execution started stating that first the functions are only defined
by clicking the function area in the GUI and the functions are not executed yet.
Nevertheless about 15 percent of the students did a simulation step as they were
executing the function.

Sleeman et al. noticed that there are two misconceptions related to the same error
as in F1. Some of their students thought that the functions (or actually at this case
procedures in Pascal) are executed immediately when a program starts. Some stu-
dents thought that they are executed first when the program starts and then again
when the functions are called [27]. Ragonis and Ben-Ari have reported a similar

CHAPTER 7. DISCUSSION 53

misconception where students think that the methods will be called according to
the order they are defined in the program code [21].

The rest of the errors in this category we reported in Chapter 6 are related to pro-
cess how a function call works: evaluating parameters, passing parameters, eval-
uating the function, returning the return value and possibly assigning it to a vari-
able. The reasons behind the errors F2 – F7 can also be related to UUhistle’s user
interface but most likely there are misconceptions and misunderstandings.

Functions have always been one of the hardest things to learn in the basic course
of programming we investigate in this thesis. It takes a lot of time to understand
the concepts and still there are many students having different misconceptions al-
though functions have been used in several rounds. We are not alone with this
problem as Madison and Gifford [14] and Fleury [5] have reported many mis-
conceptions they have noticed. They have used Pascal procedures where are no
return values. A procedure can have variables that can be seen as references to
the original variable and in that way a procedure can communicate with the caller.
In Python, as in many other languages, there is a return value that is returned and
the return value must be saved to somewhere or used immediately as a part of a
statement.

The error F3 (Creating parameter value to wrong frame) shows that the students
did not know the purpose of a stack frame and how the frame defines the scope
of the variables that are available during a function call. When students are solv-
ing programming exercises, a very common misconception is that the variables
are somehow global and the local variables of a function can still be accessed al-
though the execution of a function call has already ended. The error F4 (Creating
new function call instead of passing parameters) shows that for the students the
parameter passing phase is hard to understand. They do not know what to do after
they have created a new stack frame.

One of the errors, the error F5 (Trying to start function call before evaluating
parameters), is related to the parameter passing. This error can be caused by
the strict simulation order but it is possible that we have found a misconception
that is not yet reported in the literature. If students do not understand that each
parameter is a single value that is evaluated before the function call starts, they
may think that the parameter can be an expression that is used somehow inside
the function. In the programming sessions, some students also think that the name
of the variable is passed and the function could use the value which is stored in
the caller’s frame. We do not have currently data to investigate this possibility
further but this is an important finding which should be investigated more in the
future. UUhistle shows an error message currently if a student tries to begin a
function call although the parameters are incorrect, ie. missing or not a single

CHAPTER 7. DISCUSSION 54

value. This simple error message should be improved to explain the nature of the
passed parameters.

When a function ends and the return value should be returned, the place where
the return value belongs is unclear. The errors F6 (Creating a variable for return
value to wrong frame) and F7 (Assigning return value back to variable instead
of returning it) show that the students did not understand that the value should
be returned to the lower frame and if the return value is saved to a variable, the
variable can not be in the frame of the function which generated the value.

After the students have returned the return value and the function call has been
replaced with the value, the students do not know what to do with the value. The
error F2 (Constructing new function call instead of assigning return value) shows
that the students can not make the difference between when jumping to the line the
first time and jumping back to that line after a function call. Hristova mentions that
sometimes students call a method in Java without saving the result although they
should [9]. We have noticed the same mistake that the students do not write an
assignment statement when they call a function as they should but instead of that
they think that they can still use the local variable of the called function containing
the return value.

These errors points out that students do not understand how a function call works
although there is a program visualization exercise which shows all the important
steps. Sorva noticed very similar problems when he analyzed the videos where
students where using UUhistle [29]. Because functions are a very integral part of
programming and obviously hard to understand, the VPS exercises should con-
centrate more on these errors. The visualization should help the understanding
but if there were more interactive tutorial explaining carefully the steps and their
purpose, students might learn better. Currently, it is possible to see the animation
containing all the important steps related to functions but if there are students who
do not understand the steps and do not read the explanation texts which need to be
opened after each step separately, there is a big risk that they can not understand
what they are doing while simulating the rest of the exercises.

Object-oriented programming

Object-oriented programming is the field of the recent research. Many CS1 courses
are taught with object-oriented languages such as Java and therefore this is a nat-
ural research field. However, the course where UUhistle has been used is mostly
procedural programming, but the last exercise round covers the very basics of
object-oriented programming.

CHAPTER 7. DISCUSSION 55

Although there is only one round about objects, we found a few object-oriented
misconceptions that are already reported. One of these is the error OO2 (Creating
new object instead of assigning reference). In this error the students did not realize
that a variable holds only a reference to the object and if that reference is assigned
to another variable, no new objects will be created.

Ma used in a experiment reported in his thesis [13] very similar code as we had
in the exercise 9.2. Ma created different kind of categories what student thinks
that will happen when a code line such as a = b is executed, if there is an object
reference in the variable b. We noticed that 6 – 14 % of the students created a
new object instead of just assigning the reference to another variable. Ma has
named this as Assign model, where a copy of the object is assigned to the variable.
If the students using UUhistle had continued the execution after the error, they
would most probably have initialized the object they created to be a copy of the
original and assigned that to the new variable. Sorva has also reported the same
misconception in his article [28]. There is already an explanation of the mistake
which can be opened after this error but the number of the students reading the
explanation was extremely small. This kind of dialogs could always be opened
and the dialog could contain an option not showing it anymore after the student
has understood the idea. In this way, more students would probably read the
explanation and realize the purpose of the line correctly.

The second misconception is the error OO4 (Creating incorrectly instance vari-
able) where the students have created an instance variable with the same name as
the local variable where the reference should be assigned. Holland et al. discuss
Identity/attribute confusion in which students think the local variable (or its name)
is part of the object [8]. Ragonis and Ben-Ari [21] have also have noticed that
some students think that an instance variable can be used as the identifier or the
identifier is one of the instance variables. Sorva reported that some students think
that the object is somehow named or the name is part of the object [28]. In the
research by Sajaniemi et. al the students were asked to draw a picture of a given
program at certain point. In these pictures it was also visible that the students had
placed the name of the local variable inside the object [23]. Better feedback in
this situation would also be helpful. Currently, the explanations contain only text
and hyperlinks but in this kind of situation a picture could also help to understand
the idea of the reference.

The third error, OO5 (Dragging reference to existing object instead of creating
new), might be related to the misconception where students do not know the dif-
ference between a class and an instance. Holland et al. call this as Object/class
conflation [8]. Sanders and Thomas investigated this and noticed that some stu-
dents defined three similar classes and instantiated each one once instead of in-

CHAPTER 7. DISCUSSION 56

stantiating one class three times [24]. This indicates that students may think that
one class can be instantiated only once. In UUhistle the students tried to use the
previously created object when they were supposed to create a new object. They
may have thought that they should use somehow the same instance already existed
and did not realize that the purpose of the corresponding line is to create a new
instance and after that there are two instances of the same object in the heap.

7.2 Exercise solving strategies

We asked in the course feedback form what kind of strategies the students have
used to solve the simulation exercises. The students could select many suitable
options. One of the options was a strategy where the student just tries everything
in order to proceed without thinking much before or after simulation steps. In
2011, about 30 % of the students indicated that they have used this strategy. An-
other option was similar but in that strategy the students stopped in order to think
why the step was correct after they found it. The share of the students using this
strategy was about the same. More details are in [29].

These results show that for many students the original idea of encouraging stu-
dents to think what to do does not hold. If students use trial-and-error approach
it can explain why they are not interested the additional information as described
in Section 6.3. For some students it is also hard to understand the link between
UUhistle and the program execution. They can think UUhistle as some kind of
puzzle without understanding what they should learn. The log files also showed
that there were really students who have solved the whole exercise with trial-and-
error approach.

Currently, UUhistle shows only an error message if a student makes an incorrect
step. If each step seems to produce this very general message, it will not motivate
students. There are only a few more detailed error messages but in the future we
should implement at least to the most common errors a detailed message which
explains why the step was incorrect and tries in that way correct a possible miscon-
ception. If UUhistle can give good feedback, students will hopefully understand
that there is something behind the logic. Of course the feedback must be presented
in such way that students will read or otherwise it will not help.

To motivate students better UUhistle could be used more frequently in lectures to
explain and visualize different concepts together with theory and other examples.
In this way UUhistle would not be only a platform providing simulation exercises
without a clear connection to the contents of the course.

CHAPTER 7. DISCUSSION 57

7.3 Trustworthiness of the results

The percentages we reported in the Chapter 6 are gathered from the log files that
were collected during three years in Aalto University. The log files were mostly
automatically processed but a small percentage of files needed to be fixed or were
skipped. The average number of the analyzed files is above 500 which covers
on average over 95 percent of the total number of files that were available. The
total number of the analyzed files is over 24000. As we have analyzed a very
large number of files, the results should be accurate and reflect on the actual us-
age.

The same numerical results should be obtained if the same log files are processed
with a similar analysis tool. The analysis tool we used is written by the author but
no other persons have reviewed it so there is a small probability that the analysis
tool has worked incorrectly. To minimize this risk the tool was written so that if
it fails to follow the log file the analysis will stop and the incorrect file must be
fixed manually or added to the list of the files to be ignored. The results the tool
generated reflects well on the other observations we have made and we have no
reason to believe that the numerical results are incorrect.

The possible causes for the error presented in Chapter 6 are based on our own ex-
periences and the literature. We have developed the system and been also involved
in the course arrangements. Therefore we have quite a good vision of how the
students have used UUhistle, what they have learned and what kind of problems
they have with UUhistle exercises or programming exercises. We have used this
knowledge to create the most likely reasons behind the errors but we must admit
that we do not have data that could prove our interpretations to be correct. Our
knowledge also affects the interpretations and therefore it is possible that other
researchers could make different interpretations from the same numerical results
based on their knowledge or other literature references that we have used.

It is also likely that if UUhistle was used in a different kind of context, for example,
if the exercises were different or it had been used in a different way as a part of
the teaching the results would be different. If another VPS tool was used, it would
also affect the results and therefore the results we have presented can not be seen
as general results of this kind of simulation exercises.

Chapter 8

Conclusion

The main objective of this master’s thesis was to analyze the log files we had
collected during three years and see what kind of mistakes the students have
made.

The log files contained sequences of the steps the students had made and although
the log files were not originally designed to be source to this kind of analysis, the
information they contained was very valuable.

We wrote a tool which analyzed over 24 000 log files and after that we could
manually recognize 26 common errors from the results the tool generated. This
showed that collecting data is useful and provides a good way to analyze later the
usage of the educational tools and how students solve exercises. The data we have
collected has still potential to be used to create new kind of analysis that are not
part of this master’s thesis.

The results we got proves that students have problems when they need to think
about the smaller or bigger details of the program execution. A part of the com-
mon errors we noticed is most probably caused by UUhistle’s user interface but
many errors are very similar to those which have been reported in the literature
earlier.

This shows that because VPS exercises make students think about how the exe-
cution continues, program simulation exercises make the misconceptions visible
and provide a good way to provide feedback and try to correct misconceptions in
early phase of the learning process.

The optimal situation is where a VPS tool itself does not cause problems to stu-
dents with its user interface. We noticed that some problems can probably be fixed
by improving the user interface with some changes. When students do not have to

58

CHAPTER 8. CONCLUSION 59

struggle with the UI, they have more time to concentrate on the important things
we want to teach them.

The VPS exercises should be designed so that they reveal the possible misconcep-
tions. We do not want to accomplish a situation where students make no mistakes
but instead of that we want them to learn better. VPS tools should give better feed-
back that explains why the simulation step was incorrect and, if possible, some-
how explain or show what would happen if the execution continues as the student
thought. If a VPS tool can show the concept the student has causes problems, the
student can accept the correct model more easily compared to a situation where
the tool only tells that the step was not correct without any explanation.

We also noticed that although the tool could show more information about the in-
correct steps, only a very small number of the students read the explanations.

In the future VPS tools should encourage students to think more especially when
they make mistakes and avoid the current trial-and-error approach where the stu-
dents just try to guess the next step instead of thinking about the process. If VPS
exercises contained more dialog between the student and the tool, students might
see the exercises more attractive instead of a program that complains about ”ev-
erything”.

A good start to create better VPS exercises is to improve UUhistle’s user interface
to avoid the error caused by the UI and write new explanation texts for those errors
that were the most common ones. If UUhistle can give more detailed feedback in
a way that students read it, they will hopefully learn why the step was incorrect
and notice that the tool can give useful feedback which helps to understand the
difficult concepts and make easier to learn.

Bibliography

[1] Bayman, P., andMayer, R. E. A diagnosis of beginning programmers’ mis-
conceptions of BASIC programming statements. Communications of the
ACM 26 (September 1983), 677–679.

[2] Bonar, J., and Soloway, E. Preprogramming knowledge: a major source of
misconceptions in novice programmers. Human-Computer Interaction 1, 2
(June 1985), 133–161.

[3] Donmez, O., and Inceoglu, M. M. A web based tool for novice program-
mers: Interaction in use. In Proceedings of the international conference
on Computational Science and Its Applications, Part I (2008), ICCSA ’08,
Springer-Verlag, pp. 530–540.

[4] Du Boulay, B. Some difficulties of learning to program. Journal of Educa-
tional Computing Research 2, 1 (1986), 57–73.

[5] Fleury, A. E. Parameter passing: the rules the students construct. In Pro-
ceedings of the twenty-second SIGCSE technical symposium on Computer
science education (1991), SIGCSE ’91, ACM, pp. 283–286.

[6] Fleury, A. E. Programming in Java: student-constructed rules. In Proceed-
ings of the thirty-first SIGCSE technical symposium on Computer science
education (2000), SIGCSE ’00, ACM, pp. 197–201.

[7] Hiisilä, A. Kurssinhallintajärjestelmä ohjelmoinnin perusopetuksen avuksi.
Master’s thesis, Teknillinen korkeakoulu, Espoo, Finland, 2005.

[8] Holland, S., Griffiths, R., andWoodman, M. Avoiding object misconcep-
tions. In Proceedings of the twenty-eighth SIGCSE technical symposium on
Computer science education (1997), SIGCSE ’97, ACM, pp. 131–134.

[9] Hristova, M., Misra, A., Rutter, M., andMercuri, R. Identifying and cor-
recting java programming errors for introductory computer science students.

60

BIBLIOGRAPHY 61

In Proceedings of the 34th SIGCSE technical symposium on Computer sci-
ence education (2003), SIGCSE ’03, ACM, pp. 153–156.

[10] Kaczmarczyk, L. C., Petrick, E. R., East, J. P., and Herman, G. L. Iden-
tifying student misconceptions of programming. In Proceedings of the 41st
ACM technical symposium on Computer science education (2010), SIGCSE
’10, ACM, pp. 107–111.

[11] Kollmansberger, S. Helping students build a mental model of computation.
In Proceedings of the fifteenth annual conference on Innovation and technol-
ogy in computer science education (2010), ITiCSE ’10, ACM, pp. 128–131.

[12] Korhonen, A., Helminen, J., Karavirta, V., and Seppälä, O. Trakla2. In
Proceedings of the 9th Koli Calling International Conference on Comput-
ing Education Research (November 2010), A. Pears and C. Schulte, Eds.,
University of Joensuu, pp. 43–46.

[13] Ma, L. Investigating and improving novice programmers’ mental models
of programming concepts. PhD thesis, University of Strathclyde, Glasgow,
United Kingdom, 2007.

[14] Madison, S., and Gifford, J. Parameter Passing: The Conceptions Novices
Construct. Distributed by ERIC Clearinghouse, 1997.

[15] Mayer, R. E. The psychology of how novices learn computer programming.
ACM Comput. Surv. 13 (March 1981), 121–141.

[16] Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. Visualizing pro-
grams with Jeliot 3. In Proceedings of the working conference on Advanced
visual interfaces (2004), AVI ’04, ACM, pp. 373–376.

[17] Myller, N. Automatic prediction question generation during program visu-
alization. In Proceedings of the 4th Program Visualization Workshop (2006),
University of Florence, pp. 89–93.

[18] Online tutoring system (OTS) web page. Accessed March 2012.
http://www.kolls.net/ots/.

[19] Pea, R. D. Language-independent conceptual ”bugs” in novice program-
ming. Journal of Educational Computing Research 2 (1986), 25–36.

[20] Putnam, R., Sleeman, D., Baxter, J. A., and Kuspa, L. K. A summary of
misconceptions of high school basic programmers. Educational Computing
Research 2, 4 (1986), 459–472.

http://www.kolls.net/ots/

BIBLIOGRAPHY 62

[21] Ragonis, N., and Ben-Ari, M. A long-term investigation of the comprehen-
sion of OOP concepts by novices. Computer Science Education 15 (2005),
203 – 221.

[22] Rajala, T., Laakso, M.-J., Kaila, E., and Salakoski, T. VILLE - a language-
independent program visualization tool. In Conferences in Research and
Practice in Information Technology (2007), L. Raymond and Simon, Eds.,
vol. 88, Australian Computer Society, Inc.

[23] Sajaniemi, J., Kuittinen, M., and Tikansalo, T. A study of the development
of students’ visualizations of program state during an elementary object-
oriented programming course. In Proceedings of the 3rd international work-
shop on Computing education research (2007), ICER ’07, ACM, pp. 1–16.

[24] Sanders, K., and Thomas, L. Checklists for grading object-oriented CS1
programs: concepts and misconceptions. In ITiCSE (2007), pp. 166–170.

[25] Sheil, B. A. The psychological study of programming. ACM Computing
Surveys 13 (March 1981), 101–120.

[26] Simon. Assignment and sequence: why some students can’t recognise a sim-
ple swap. In Proceedings of the 11th Koli Calling International Conference
on Computing Education Research (2011), Koli Calling ’11, ACM, pp. 10–
15.

[27] Sleeman, D., Putnam, R. T., Baxter, J., and Kuspa, L. An introductory
Pascal class: A case study of students’ errors. In Teaching and Learning
Computer Programming: Multiple Research (1988), pp. 237–257.

[28] Sorva, J. Students’ understandings of storing objects. In Proceedings of
7th Baltic Sea Conference on Computing Education Research (Koli Calling)
(2007), R. Lister and Simon, Eds., vol. 88 of CRPIT, ACS, pp. 127–135.

[29] Sorva, J. Visual Program Simulation in Introductory Programming Educa-
tion. PhD thesis, Aalto University, Espoo, Finland, 2012.

[30] Sorva, J., and Sirkiä, T. Uuhistle: a software tool for visual program simu-
lation. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (2010), Koli Calling ’10, ACM, pp. 49–54.

[31] Sorva, J., and Sirkiä, T. Context-sensitive guidance in the UUhistle program
visualization system. In Proceedings of the 6th Program Visualization Work-
shop (2011), G. Rößling, Ed., Technische Universität Darmstadt, pp. 77–85.

BIBLIOGRAPHY 63

[32] Spohrer, J. C., and Soloway, E. Alternatives to construct-based program-
ming misconceptions. In Proceedings of the SIGCHI conference on Human
factors in computing systems (1986), CHI ’86, ACM, pp. 183–191.

[33] UUhistle web page. Accessed May 2012. http://www.uuhistle.org.

[34] ViLLE web page. Accessed March 2012. http://ville.cs.utu.fi/.

http://www.uuhistle.org
http://ville.cs.utu.fi/

Appendix A

Students and their backgrounds

The following table shows how many students participated to the programming
course where UUhistle was used. Because in 2010 the UUhistle exercises were
voluntary, not all students did the exercises. In 2011 and 2012 the UUhistle ex-
ercises were a part of the course as the other exercises and therefore all students
have solved at least one UUhistle exercise during the course.

Table A.1: The total number of the students

year participants students using UUhistle
2010 691 571
2011 688 688
2012 597 597

The previous programming experience of the students who used UUhistle is pre-
sented in the following table. The question in the background questionnaire was
how long was the largest program they had coded before the course started. Most
of the students did not have any or only a very limited previous experience. N/A
means the student did not know the answer or did not want to answer.

Table A.2: Previous programming experience measured on the length of the
largest program the students had written before the course

year 0 lines below 100 below 500 below 5000 longer N/A
2010 44 % 28 % 11 % 6 % 1 % 8 %
2011 45 % 25 % 9 % 6 % 1 % 11 %
2012 47 % 29 % 6 % 3 % 1 % 10 %

64

Appendix B

The number of the analyzed log files

The following table shows how many log files were successfully analyzed. The
average percentage of skipped files is about 5 % but there are only five cases where
the percentage is less than 90 %. The lowest percentage is 81.6 % in the exercise
4.4 in 2010.

Table B.1: The number of the analyzed log files per year and exercise

year ex 1.2 ex 1.3 ex 1.5 ex 1.6 ex 1.7 ex 2.2 ex 2.3 ex 3.2
2010 523 513 503 493 383 516 493 476
2011 671 644 654 646 490 654 659 635
2012 589 565 569 567 428 571 579 579

year ex 4.2 ex 4.3 ex 4.4 ex 5.1 ex 5.2 ex 8.3 ex 9.2 ex 9.4
2010 454 464 470 455 414 372 344 331
2011 634 621 581 581 632 93 518 431
2012 555 539 493 506 547 56 434 371

The major drop in the exercise 8.3 is caused by the course arrangements. In 2010
the exercise 8.3 was worth of 50 points. In 2011 and 2012 this exercise related
to recursion was changed to be a voluntary exercise without any points because
recursion was not a part of the course. Only the most motivated students have
done the exercise in 2011 and 2012.

65

Appendix C

UUhistle exercises

Exercise 1.1 (animation)

marks = 200 + 250

euros = marks / 5.94573

Exercise 1.2: (VPS)

celsius = 100

fahrenheit = 1.8 * celsius + 32

Exercise 1.3: (VPS)

first = 10

second = -20

temp = first

first = second

second = temp

Exercise 1.4: (VPS)

first = 3

first = first + 1

first = 1 + first

first = first + first

66

APPENDIX C. UUHISTLE EXERCISES 67

Exercise 1.5: (animation)

name = raw_input(’What is your name?’)

print ’What a lovely name,’, name

Exercise 1.6: (VPS)

celsius = raw_input(’Enter temperature in Celsius:’)

fahrenheit = 1.8 * float(celsius) + 32

print fahrenheit

Exercise 1.7: (VPS)

marks = float(raw_input(’Enter amount in marks:’))

print ’It is’, marks / 5.94573, ’euros.’

Exercise 2.1: (animation)

line = raw_input(’Enter a number:’)

number = float(line)

if number > 5000:

print ’Quite a big fish!’

else:

print ’Was that the biggest number you got?’

print ’The game is over.’

Exercise 2.2: (VPS)

divisor = 4

if divisor == 0:

print ’Chuck Norris divides by zero, you do not.’

else:

print 1000 / divisor

APPENDIX C. UUHISTLE EXERCISES 68

Exercise 2.3: (VPS)

years = 25

if years >= 0:

adult = years >= 17

if adult:

print ’Adult: ’, years - 18

else:

print ’Yet a child: ’, 18 - years

print adult

else:

print ’One for the future.’

print years

Exercise 3.1: (animation)

REPEATS= 3

i = 0

sum = 0

while i < REPEATS:

line = raw_input(’Enter temperature:’)

sum = sum + float(line)

i = i + 1

print ’Average:’, sum / REPEATS

Exercise 3.2 (year 2010): (VPS)

i = 0

while i < 7:

i = i + 2

print i

i = i + 1

print i

APPENDIX C. UUHISTLE EXERCISES 69

Exercise 3.2 (year 2011 and 2012): (VPS)

value = 1

print ’The first numbers in the series:’

while value < 5:

print value

value = value * 2

print ’The end!’

Exercise 4.1: (animation)

def greet(name, lucky_number):

print ’Hi,’, name

return lucky_number + 1

result = greet(’BB-Esa’, 7)

print result * 5

print greet(’Idols-Ari’, 666)

Exercise 4.2: (VPS)

def ask_euros():

line = raw_input(’Enter euros:’)

return line

text = ask_euros()

print float(text)

Exercise 4.3: (VPS)

def calculate(first, second):

return second * 2 + first

result = calculate(3, 2)

result = calculate(result, result + 1)

APPENDIX C. UUHISTLE EXERCISES 70

Exercise 4.4 (year 2010 and 2011): (VPS)

def calculate(first, second):

result = first - second

return result * result

def main():

val1 = int(raw_input(’Enter an integer:’))

val2 = 10

result = calculate(val1, val2)

print result + 2

main()

Exercise 4.4 (year 2012): (VPS)

def calculate(first, second):

intermediate = first - second

return intermediate * intermediate

def main():

val1 = int(raw_input(’Enter an integer:’))

val2 = 10

intermediate = val1 + val2

result = calculate(val1, val2) + intermediate

print result

main()

APPENDIX C. UUHISTLE EXERCISES 71

Exercise 5.1 (year 2010): (VPS)

def info_ok(name, age):

return len(name) >= 0 and age >= 0

def print_info(name, age):

if not info_ok(name, age):

return False

print ’Name:’, name

print ’Age:’, age

return True

if print_info(’Johan’, 15):

print print_info(’Peewit’, -1000)

else:

print ’Serve you right!’

Exercise 5.1 (year 2011 and 2012): (VPS)

def info_ok(destination, distance):

return len(place) > 0 and distance > 0

def send_package(destination, distance):

if not info_ok(place, distance):

return False

print ’Destination:’, destination

print ’Distance:’, distance

return True

if send_package(’Helsinki’, 20):

print ’Shipment successful!’

else:

print ’Shipment failed!’

APPENDIX C. UUHISTLE EXERCISES 72

Exercise 5.2: (VPS)

def calculate(first, second):

return second * 3 + first

def double(value):

return value * 2

print double(double(5))

print calculate(double(3), 2 + calculate(5, 1))

Exercise 6.1 (year 2011 and 2012): (animation)

def find(source, results):

for value in source:

if value > 8:

results.append(value)

def main():

number_list = [2, 5, 4, 9, 16]

number_list[1] = 6

first = number_list[0]

bigger_values = []

find(number_list, bigger_values)

if len(bigger_values) > 0:

print ’Numbers bigger than 8:’, bigger_values

else:

print ’There were not bigger numbers than 8.’

main()

APPENDIX C. UUHISTLE EXERCISES 73

Exercise 7.1 (year 2011 and 2012): (animation)

def add_numbers(phonebook):

phonebook[’Ville’] = ’050-123456’

phonebook[’Matti’] = ’040-765432’

phonebook[’Liisa’] = ’045-132465’

def main():

phonenumbers = {}

add_numbers(phonenumbers)

print ’End with an empty string.’

print ’Remember capital letters!’

name = raw_input(’Whose number you want to get?’)

while name != ’’:

if name in phonenumbers:

number = phonenumbers[name]

parts = numero.split(’-’)

print ’Area code:’, parts[0], ’Phone number:’, parts[1]

else:

print ’The name’, name, ’does not exist.’

name = raw_input(’Whose number you want to get?’)

print ’The program ends.’

main()

Exercise 8.1 (year 2011 and 2012): (animation)

f = open(’stock.txt’, ’r’)

for line in f:

line = line.rstrip()

parts = line.split(’;’)

count = int(parts[0])

if count < 10:

print parts[1]

f.close()

APPENDIX C. UUHISTLE EXERCISES 74

Exercise 8.2: (animation)

def count_sum(sum, left):

if left > 0:

newest = float(raw_input(’Enter value:’))

return count_sum(sum + newest, left - 1)

else:

return sum

print ’The sum is:’, count_sum(0, 3)

Exercise 8.3: (VPS)

Calcuates the factorial of a positive integer.

def factorial(n):

if n < 3:

return n

else:

return factorial(n-1) * n

print ’Result:’, kertoma(5)

Exercise 9.1: (VPS)

car1 = Car(50)

car1.fuel(40)

liters = car1.fuel(60)

print liters

car1.drive(10)

print car.get_fuel()

car2 = Car(60)

car2.fuel(10)

APPENDIX C. UUHISTLE EXERCISES 75

Exercise 9.2: (VPS)

car1 = Car(45)

car1.fuel(15)

car2 = Car(60)

car3 = car1

car3.fuel(20)

print car.get_fuel()

print car3.get_fuel()

car3 = car2

print car3.get_fuel()

Exercise 9.3: (VPS)

class Car:

def __init__(self, tank_size):

self.__tank_size = tank_size

self.__gas = 0

def fuel(self, liters):

added = min(liters, self.__tank_size - self.__gas)

self.__gas = self.__gas + added

return added

def drive(self, consumption):

if self.__gas < consumption:

return False

self.__gas = self.__gas - consumption

return True

def get_fuel(self):

return self.__gas

car1 = Car(50)

car1.fuel(40)

liters = car1.fuel(60)

print liters

car1.drive(10)

print car1.get_fuel()

car2 = Car(60)

car2.fuel(10)

APPENDIX C. UUHISTLE EXERCISES 76

Exercise 9.4: (VPS)

class Person:

def __init__(self, firstname, profession):

self.__name = firstname

self.__profession = profession

def greet(self, other):

return self.__name + ’. Nice to meet you, ’ + other.__name

def get_profession(self):

return self.__profession

first = Person(’Babar’, ’doctor’)

print first.get_profession()

second = Person(’Safiira’, ’biologist’)

print first.greet(second)

	Cover page
	Contents
	1 Introduction
	1.1 Difficulties in programming
	1.2 Program visualization and simulation
	1.3 Structure of this thesis

	2 Programming misconceptions
	2.1 Background
	2.2 Types of the misconceptions
	2.3 Sources of the misconceptions
	2.4 Preventing and correcting misconceptions

	3 The UUhistle program simulation tool
	3.1 General overview
	3.2 User interface
	3.2.1 Original user interface
	3.2.2 Improved user interface

	3.3 UUhistle exercises
	3.4 Related systems
	3.4.1 ViLLE: Clouds and boxes
	3.4.2 Online Tutoring System
	3.4.3 The tool by Donmez and Inceoglu
	3.4.4 Other systems

	3.5 UUhistle compared with the other systems

	4 Objectives
	4.1 Common errors
	4.2 Reasons for errors
	4.3 Creating better VPS exercises

	5 Data analysis
	5.1 General description of the collected data
	5.2 The log files
	5.3 The analysis
	5.4 Challenges with the analysis

	6 Results
	6.1 Background for the data
	6.2 Common errors
	6.2.1 Basics
	6.2.2 Branches and loops
	6.2.3 Functions
	6.2.4 Object-oriented programming

	6.3 Explanation texts as a part of the exercises

	7 Discussion
	7.1 Reasons for the errors
	7.1.1 Errors caused by the user interface
	7.1.2 Errors related to previously reported misconceptions

	7.2 Exercise solving strategies
	7.3 Trustworthiness of the results

	8 Conclusion
	Bibliography
	A Students and their backgrounds
	B The number of the analyzed log files
	C UUhistle exercises

